
cupl Tag Documentation
Release 0.0.1

Malcolm Mackay

Aug 26, 2022

FIRMWARE

1 State Chart 1
1.1 Not Configured . 1
1.2 Programming Mode . 1
1.3 First Run . 1
1.4 Sampling Loop . 1

2 Reference 7
2.1 Main . 7
2.2 HDC2021 . 16
2.3 NT3H . 18
2.4 I2C . 20
2.5 Stat . 23
2.6 Config NFC . 24
2.7 Comms UART . 26
2.8 Non-Volatile Parameters . 29
2.9 Battery Voltage . 33

3 Indices and tables 35

Index 37

i

ii

CHAPTER

ONE

STATE CHART

This might look intimidating at first. Sub-sections cover the most common progressions through the state chart.

1.1 Not Configured

1.2 Programming Mode

1.3 First Run

The following state chart shows how the cuplTag operates the first time it is powered on with a good battery and a
complete configuration.

After some initialisation, a sample is collected from the HDC2021 and fed into cuplcodec.

1.4 Sampling Loop

The cuplTag wakes up each minute. Several initialisation states are skipped. The minute counter is incremented. If
this equals the configured sampling interval, then a sample is collected from the HDC2021.

cuplcodec updates the minute counter in the cupl URL (stored on the NFC EEPROM). If a new sample is available,
this is encoded and added to the circular buffer.

1

cupl Tag Documentation, Release 0.0.1

Fig. 1: Startup does not continue when the configuration is incomplete.
2 Chapter 1. State Chart

cupl Tag Documentation, Release 0.0.1

Fig. 2: The state machine branches to init_progmode() when the nPRG pin is LOW.

1.4. Sampling Loop 3

cupl Tag Documentation, Release 0.0.1

Fig. 3: The state machine in main().
4 Chapter 1. State Chart

cupl Tag Documentation, Release 0.0.1

Fig. 4: The state machine runs each minute in the sampling loop.
1.4. Sampling Loop 5

cupl Tag Documentation, Release 0.0.1

Fig. 5: The state machine in main().
6 Chapter 1. State Chart

CHAPTER

TWO

REFERENCE

2.1 Main

Top-level Finite State Machine for controlling the MSP430 and cuplTag as a whole.

A Finite State Machine is defined in this file and run from main(). This has several features.

Author
Malcolm Mackay

It makes calls to drivers for communicating with the HDC2022 humidity sensor and the NT3H2111 NFC EEPROM.

It controls entry into the ‘programming mode’ sub state machine, where configuration strings can be written using a
serial port.

It reads configuration strings from the NFC EEPROM if any are present.

It collects samples from an HDC2022 at a fixed time interval and passes these to the cuplcodec encoder.

Defines

CS_SMCLK_DESIRED_FREQUENCY_IN_KHZ

Target frequency for SMCLK in kHz.

CS_XT1_CRYSTAL_FREQUENCY

Resonant frequency of the XT1 crystal in kHz.

CS_XT1_TIMEOUT

Timeout for XT1 to stabilise at the resonant frequency in SMCLK cycles.

CP10MS

ACLK Cycles Per 10 MilliSeconds. Assumes ACLK = 32768 kHz and a divide-by-8.

EXIT_STATE

State machine exit state.

ENTRY_STATE

State machine entry state.

7

cupl Tag Documentation, Release 0.0.1

Typedefs

typedef enum state_codes tstate
States in the Finite State Machine are represented by a code. This is used each time the state machine is run, to
determine:

a. Which state function to call in main().

b. The next state in lookup_transitions().

typedef enum ret_codes tretcode
Each state function returns at least one code from the list below. This is used by lookup_transitions() to determine
the next state.

typedef enum event_codes tevent
Events occur asynchronously to execution of the FSM. The MSP430 will typically wait for an event in sleep
mode to save power. An example is an edge on the INT (interrupt) output from a temperature sensor. This is
connected to an input on the MSP430, which is configured to call an Interrupt Service Routine (ISR). The ISR
sets a flag and ‘wakes up’ the MSP430 from sleep mode.

The main() function is entered, flags are checked then cleared and the event variable is set according to the list
of codes below. Finally, the state function is called with the event passed as an argument.

Multiple events can occur simultaneously, but only one at-a-time is passed to the FSM.

Enums

enum state_codes
States in the Finite State Machine are represented by a code. This is used each time the state machine is run, to
determine:

a. Which state function to call in main().

b. The next state in lookup_transitions().

Values:

enumerator sc_init
State code for init_state()

enumerator sc_init_reqmemon
State code for init_reqmemon()

enumerator sc_init_waitmemon
State code for init_waitmemon()

enumerator sc_init_ntag
State code for init_ntag()

8 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

enumerator sc_init_progmode
State code for init_progmode()

enumerator sc_init_configcheck
State code for init_configcheck()

enumerator sc_init_errorcheck
State code for init_errorcheck()

enumerator sc_init_wakeupcheck
State code for init_wakeupcheck()

enumerator sc_init_batvwait
State code for init_batvwait()

enumerator sc_init_rtc_slow
State code for init_rtc_slow()

enumerator sc_init_rtc_1min
State code for init_rtc_1min()

enumerator sc_smpl_checkcounter
State code for smpl_checkcounter()

enumerator sc_smpl_hdcreq
State code for smpl_hdcreq()

enumerator sc_smpl_hdcwait
State code for smpl_hdcwait()

enumerator sc_smpl_hdcread
State code for smpl_hdcread()

enumerator sc_smpl_wait
State code for smpl_wait()

enumerator sc_err_msg
State code for err_msg()

enumerator sc_end
State code for end_state()

enum ret_codes
Each state function returns at least one code from the list below. This is used by lookup_transitions() to determine
the next state.

Values:

2.1. Main 9

cupl Tag Documentation, Release 0.0.1

enumerator tr_ok

enumerator tr_prog

enumerator tr_newconfig

enumerator tr_hdcreq
Request a sample from the HDC2021 sensor.

enumerator tr_updatemin

enumerator tr_deepsleep
cuplTag should enter a deep sleep state LPM3.5

enumerator tr_lowbat

enumerator tr_fail

enumerator tr_samplingloop
cuplTag is in the sampling loop. The reset was caused by an exit from LPM3.5

enumerator tr_por
cuplTag is NOT in the sampling loop. A Power-On-Reset has occurred.

enumerator tr_wait
cuplTag should enter a sleep state, such as LPM0, to wait for an event.

enum event_codes
Events occur asynchronously to execution of the FSM. The MSP430 will typically wait for an event in sleep
mode to save power. An example is an edge on the INT (interrupt) output from a temperature sensor. This is
connected to an input on the MSP430, which is configured to call an Interrupt Service Routine (ISR). The ISR
sets a flag and ‘wakes up’ the MSP430 from sleep mode.

The main() function is entered, flags are checked then cleared and the event variable is set according to the list
of codes below. Finally, the state function is called with the event passed as an argument.

Multiple events can occur simultaneously, but only one at-a-time is passed to the FSM.

Values:

enumerator evt_none
No event has occurred.

enumerator evt_timerfinished
The timer peripheral has counted down to 0.

enumerator evt_hdcint
Pin change interrupt received from the HDC2021 temperature and humidity sensor.

10 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

Functions

void fram_write_enable()
Enable writes to program FRAM.

Some variables are stored in program FRAM. RAM cannot be used because state is lost in deep sleep mode
(LPM3.5). The Program FRAM Write Protect bit must be cleared (and interrupts disabled) before a write.

void fram_write_disable()
Disable writes to program FRAM.

Sets the Program FRAM Write Protect bit and re-enables interrupts.

tretcode init_state(tevent evt)
Initialise clocks and IOs on the MSP430.

All IOs are configured into an initial state. The number of IOs left as inputs (default) must be minimised to
reduce power consumption.

The slow Auxiliary Clock (ACLK) is sourced form the external 32.768 kHz crystal. An internal 10 kHz source
is used by default. This is power hungry and drifts with temperature.

Next, the Phased-Locked Loop (DCO) generates an output frequency of 1 MHz, by multiplying the external
32.768 kHz crystal frequency up by 31.

Internal clocks MCLK and SMCLK are connected to the DCO output.

1 MHz was selected to minimise current draw from the high impedance coin cell battery. This results in a lower
voltage drop after exiting the sleep state. Battery life is limited by this voltage drop. This is not the case if the
source impedance is lower. Then it is best to operate at a higher frequency: up to 24 MHz.

Finally, the cause of the reset is read. The program needs to know whether this is just a routine wake-up from
sleep (LPM3.5) or the result of a fault.

tretcode init_reqmemon(tevent evt)
This state calls reqmemon().

tretcode init_waitmemon(tevent evt)
This state calls waitmemon().

tretcode init_ntag(tevent evt)
Initialise the dual-interface I2C+NFC EEPROM.

A call is made to ‘nt3h_check_address()’ to make sure the EEPROM is at device address 0x55.

The first EEPROM block is read to check for an NFC text record. If found, configuration strings are extracted
and saved into non-volatile memory.

The capability container is written if it needs to be. These 4 bytes indicate that the tag contains an NDEF message.

The programming mode select pin (nPRG) is checked. If it is LOW, the return code is updated.

tretcode init_progmode(tevent evt)
Run the programming mode sub-state machine.

Enables the serial port (UART) and responds to text commands.

It is only intended that this state be entered in a production environment, not by the end user.

The only way to exit is to reset the microcontroller. This can be done by sending a soft reset command ‘<z>’.

2.1. Main 11

cupl Tag Documentation, Release 0.0.1

tretcode init_configcheck(tevent evt)
Verifies that all configuration strings have been written.

The state machine cannot continue unless the tag is fully configured. There are no default settings.

When configuration is incomplete, a text-based error message is written to the tag and deep-sleep mode is entered.

tretcode init_errorcheck(tevent evt)
Check for an error condition before continuing startup.

An error occurs if the reset was caused by a reason other than a new battery insertion.

When the battery voltage is below a threshold (set in NVM). The state machine should not get stuck in a loop,
where an attempt is made to write to the NFC EEPROM before the micro-controller resets. Reset loops can wear
out the EEPROM.

In the event of 10 consecutive resets that result in an error, or a single low battery reading:

a. Report the most recent error in the cupl URL status word.

b. Do not include any samples in the cupl URL.

c. Go to a deep sleep state that prevents another reset cycle from occurring for some time.

Otherwise:

a. Report the most recent error in the cupl URL but treat it as spurious.

b. Allow the state machine to continue.

Returns
tr_deepsleep when 10 consecutive errors have occurred or the battery voltage is low. Otherwise
indicate no errors with tr_ok.

tretcode init_wakeupcheck(tevent evt)
Has the reset has been caused by a routine RTC wake-up?

In the sampling loop, Wake-ups from LPM3.5 occur every minute. These are invoked by an interrupt from the
Real Time Clock peripheral.

This function first makes a call to stat_rstcause_is_lpm5wu(). Then it checks if the first integer in Backup Mem-
ory is 1. If it is, then the cuplTag is in the sampling loop.

Returns
tr_samplingloop if the cuplTag is in the sampling loop. Otherwise, indicate a power-on-reset
with tr_por.

tretcode init_batvwait(tevent evt)
Wait for the battery voltage to stabilise.

It takes some time for capacitors to charge after a battery is inserted. A timer is started in the previous state. The
MSP430 waits here in low power mode.

Parameters
evt – [in] Event. When set to evt_timerfinished the state machine progresses.

Returns
tr_ok when the timer has finished. Otherwise tr_wait.

12 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

tretcode init_rtc_slow(tevent evt)
Configure the Real Time Clock to peripheral to generate one interrupt every 30 minutes.

This is done to prevent the cuplTag from being stuck in the end_state when an error occurs during startup. This
state must be entered before any possible transitions to the end_state.

Whatever the error, the cuplTag must wake up and try to start up again. A long time interval has been chosen so
that the battery is not depleted.

tretcode init_rtc_1min(tevent evt)
Configure the Real Time Clock peripheral to generate one interrupt every minute.

The cuplTag spends most of the time in a deep sleep mode LPM3.5 to save power. Each minute, it wakes up for
a few milliseconds to collect a sample or to increment minutecounter.

TURBO MODE is a special feature that is useful for test purposes. When enabled, the interrupt occurs every 3
seconds. To enable, set the time interval parameter to 0.

tretcode smpl_checkcounter(tevent)

tretcode smpl_hdcreq(tevent evt)
Request a sample from the HDC2021 sensor.

A sample is requested by the MSP430 with hdc2020_startconv(). When data is ready, the HDC2021 makes a
HIGH to LOW transition on its INT pin. To save power, the MSP430 sleeps whilst the measurement is taken.

The MSP430 pin connected to INT is made to raise an interrupt when a falling edge is detected.

tretcode smpl_hdcwait(tevent evt)
Wait in LPM3 whilst waiting for a data ready interrupt from the HDC2021 sensor.

Returns
tr_ok when a DRDY interrupt has been detected. Otherwise return tr_wait to indicate that the
MSP430 should sleep.

tretcode smpl_hdcread(tevent)

tretcode smpl_wait(tevent)

tretcode err_msg(tevent evt)
Write the NDEF message ndefmsg_badtrns to the NFC EEPROM.

Notify the developer that an invalid state machine transition has been requested. The user should never see this.
This will occur if a transition has been requested that does not exist in the state_transitions table.

tretcode end_state(tevent evt)
Put the MSP430 into deep sleep LPM3.5.

Minimise power consumption by powering down as much of the MSP430 (and cuplTag) as possible. Only the
Real Time Clock and Backup Memory peripherals remain powered on.

The RTC can generate an interrupt to wake the MSP430 up. When this occurs, the program starts from a reset
condition. Only the backup memory can be used to persist state.

This function disables GPIO interrupt sources. It stops any timers, in case these prevent LPM3.5 from be-
ing entered. It disables the watchdog, because this is power hungry and the RTC can be used instead (see
init_rtc_slow()).

Most importantly it calls memoff() to make sure that the VMEM domain is powered down.

The Supply Voltage Supervisor is disabled to save power. It is not very useful in deep sleep mode. The battery
voltage will decline very little between wake-ups from the RTC.

2.1. Main 13

cupl Tag Documentation, Release 0.0.1

Returns
tr_ok but this is to keep the compiler happy. Deep sleep is entered before the function returns.

tstate lookup_transitions(tstate curstate, tretcode rc)
Look up the next state in the Finite State Machine.

The look-up is performed by iterating through an array of transitions. An error state is returned if no match is
found.

Parameters

• curstate – [in] Current state.

• rc – [in] Code returned from the current state.

Returns
Next state.

static void writetxt(const char *msgptr, int len)
Write an NDEF message to the NFC EEPROM.

The NDEF message normally contains one text record. It can be created with an external program and stored as
a constant array. The function is used to display simple error messages to the end-user.

Parameters

• msgptr – [in] Pointer an NDEF message array.

• len – [in] Length of the NDEF message.

static void wdog_kick()
Kick the watchdog, to prevent it from timing out.

This is done by writing to the watchdog control register.

static void start_timer(unsigned int intervalCycles)
Start a single-shot timer.

An interrupt fires when the timer has finished counting. The MSP430 can sleep in LPM3 whilst waiting for it.
This saves power over delay loops.

The function is best suited to pausing execution for a short time (milliseconds).

Parameters
intervalCycles – [in] Number of 4.096 kHz clock cycles to count.

static void memoff()
Power down the VMEM domain.

The load switch enable pin is set low, breaking the circuit between VDD and VMEM. This is done to save power
in sleep mode. The NT3H2111 EEPROM will otherwise draw ~10uA.

static tretcode reqmemon(tevent evt)
Enable power to the VMEM domain.

Configure a pin to receive interrupts from the humidity sensor. Set the load switch enable pin HIGH to power
up the VMEM domain from VDD.

After this function has been called, the MSP430 must sleep whilst waiting for a Timer interrupt. When this fires,
the VMEM voltage should be stable.

14 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

static tretcode waitmemon(tevent evt)
Wait for the VMEM voltage to stabilise after power on.

Timer_B1 must be started with start_timer() prior to calling this function.

Parameters
evt – [in] Event. When set to evt_timerfinished, I2C is enabled and the state machine progresses.

void main(void)

void TIMER1_B0_ISR(void)

if ((P1IN &BIT1)==0)

Variables

int timerFlag = 0
Flag set by the Timer Interrupt Service Routine.

int hdcFlag = 0
Flag set by the HDC2021 humidity sensor data-ready Interrupt Service Routine.

int minutecounter = 0
Incremented each time the sampling loop is run.

const char ndefmsg_progmode[] = {0x03, 0x3D, 0xD1, 0x01, 0x39, 0x54, 0x02, 0x65, 0x6E, 0x50, 0x72, 0x6F,
0x67, 0x72, 0x61, 0x6D, 0x6D, 0x69, 0x6E, 0x67, 0x20, 0x4D, 0x6F, 0x64, 0x65, 0x2E, 0x20, 0x43, 0x6F, 0x6E,
0x6E, 0x65, 0x63, 0x74, 0x20, 0x74, 0x6F, 0x20, 0x73, 0x65, 0x72, 0x69, 0x61, 0x6C, 0x20, 0x70, 0x6F, 0x72,
0x74, 0x20, 0x61, 0x74, 0x20, 0x39, 0x36, 0x30, 0x30, 0x20, 0x62, 0x61, 0x75, 0x64, 0x2E, 0xFE}

Hard-coded NDEF message containing one text record “Programming Mode. Connect to serial port at 9600
baud.”

const char ndefmsg_noconfig[] = {0x03, 0x2D, 0xD1, 0x01, 0x29, 0x54, 0x02, 0x65, 0x6E, 0x43, 0x6F, 0x6E,
0x66, 0x69, 0x67, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6B, 0x20, 0x66, 0x61, 0x69, 0x6C, 0x65, 0x64, 0x2E, 0x20,
0x53, 0x65, 0x65, 0x20, 0x63, 0x75, 0x70, 0x6C, 0x54, 0x61, 0x67, 0x20, 0x64, 0x6F, 0x63, 0x73, 0x2E, 0xFE}

Hard-coded NDEF message containing one text record “Config check failed. See cuplTag docs.”

const char ndefmsg_badtrns[] = {0x03, 0x27, 0xD1, 0x01, 0x23, 0x54, 0x02, 0x65, 0x6E, 0x45, 0x72, 0x72, 0x6F,
0x72, 0x3A, 0x20, 0x49, 0x6E, 0x76, 0x61, 0x6C, 0x69, 0x64, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x20, 0x74,
0x72, 0x61, 0x6E, 0x73, 0x69, 0x74, 0x69, 0x6F, 0x6E, 0x2E, 0xFE}

Hard-coded NDEF message containing one text record “Error: Invalid state transition.”

tretcode (*state_fcns[])(tevent) = {init_state, init_reqmemon, init_waitmemon, init_ntag, init_progmode,
init_configcheck, init_errorcheck, init_wakeupcheck, init_batvwait, init_rtc_slow, init_rtc_1min, smpl_checkcounter,
smpl_hdcreq, smpl_hdcwait, smpl_hdcread, smpl_wait, err_msg, end_state}

struct transition state_transitions[]
The state transition table.

struct transition

2.1. Main 15

cupl Tag Documentation, Release 0.0.1

Public Members

tstate src_state
Source state.

tretcode ret_code
Code returned after executing a state function.

tstate dst_state
Destination state.

2.2 HDC2021

A driver for the Texas Instruments HDC2021 temperature and humidity sensor.

Only the basic functionality is needed - to start the sensor in one-shot mode and collect a temperature and humidity
measurement.

It is compatible with the HDC2022 and HDC2080 parts, which are electrically identical.

Defines

TEMPL_REGADDR

Temperature Low register address.

TEMPH_REGADDR

Temperature High register address.

HUML_REGADDR

Humidity Low register address.

HUMH_REGADDR

Humidity High register address.

STAT_REGADDR

Status register address.

INTEN_REGADDR

Interrupt enable register address.

TEMPOFFSETADJ_REGADDR

Temperature offset adjustment register address.

HUMOFFSETADJ_REGADDR

Humidity offset adjustment register address.

16 Chapter 2. Reference

https://www.ti.com/product/HDC2021
https://www.ti.com/product/HDC2022
https://www.ti.com/product/HDC2080

cupl Tag Documentation, Release 0.0.1

DEVCONF_REGADDR

Device configuration (soft-reset and interrupt reporting) register address.

MEASCONF_REGADDR

Measurement configuration register address.

MANFIDL_REGADDR

Manufacturer ID low-byte address.

MANFIDH_REGADDR

Manufacturer ID high-byte address.

DEVIDL_REGADDR

Device ID low-byte address.

DEVIDH_REGADDR

Device ID high-byte address.

MEASCONF_MEAS_TRIG_BIT

Trigger a measurement when applied to MEASCONF_REGADDR

STAT_DRDY_STATUS_BIT

Select the DRDY_STATUS bit from STAT_REGADDR

INTEN_DRDYEN_BIT

Enable the DataReady Interrupt when applied to INTEN_REGADDR

DEVCONF_SOFT_RES_BIT

Trigger a soft reset when applied to DEVCONF_REGADDR

DEVCONF_DRDY_INTEN_BIT

Enable the DRDY/INTEN pin when applied to DEVCONF_REGADDR

Functions

int hdc2021_startconv()
Trigger a one-shot conversion.

The HDC2021 is in one-shot mode. This function sends an I2C command to trigger the temperature and humidity
measurement.

It also configures the interrupt pin on HDC2021 to make a high-to-low transition when the conversion data are
ready. This takes ~500us, so the MSP430 can sleep in this time to save power.

int hdc2021_init()
Initialise the HDC2021 in one-shot mode.

2.2. HDC2021 17

cupl Tag Documentation, Release 0.0.1

uint32_t hdc2021_read_temprh(int *temp12b, int *rh12b)
Read temperature and humidity from the HDC2021.

Parameters

• temp12b – [out] Pointer to a variable for storing the raw 12-bit temperature.

• rh12b – [out] Pointer to a variable for storing the raw 12-bit relative humidity.

int hdc2021_read_whoami()
Read the Device ID registers.

Returns
A 16-bit Device ID. The expected value is 0x07D0.

2.3 NT3H

A driver for the NXP NT3H2111 NFC EEPROM.

Reads and writes memory on the NT3H2111 EEPROM using I2C. The memory is organised into 16-byte blocks from
the I2C perspective.

BLOCK0 contains configuration data such as the Capability Container.

Defines

ADDR_7b_MIN

Minimum value of a 7-bit device address.

ADDR_7b_MAX

Maximum value of a 7-bit device address.

WRONG_DEVADDR

A wrong NFC EEPROM device address.

BLOCK0

Address of the first memory block.

BLOCK_SESSION

Address of the memory block used for session registers.

DEVADDR_OFFSET

Byte-offset of the Device Address within the first memory block.

CC_OFFSET

Byte-offset of the Capability Container within the first memory block.

NSREG_OFFSET

Byte-offset of the NS_REG session register.

18 Chapter 2. Reference

https://www.nxp.com/docs/en/data-sheet/NT3H2111_2211.pdf

cupl Tag Documentation, Release 0.0.1

NSREG_EEPROM_WR_BUSY

Select the EEPROM Write Busy bit from NS_REG. Set to 1’b1 when a write is in progress.

BLOCKSIZE

Block size in bytes.

CC0_MAGIC

Byte 0 of the Capability Container. Magic number.

CC1_VER

Byte 1 of the Capability Container. Version.

CC2_NBYTESBY8

Byte 2 of the Capability Container. The number of bytes in memory divided by 8.

Functions

void nt3h_init_wrongaddress(void)
Deliberately assign the wrong device address to the NFC EEPROM.

This can be called to re-create a problem where the NFC EEPROM ends up with the wrong device address.

Unfortunately, the device address is mutable and located in byte 0 of memory.

When power is running low, an unwanted transaction can occur (a series of zeroes) that clears the device address.

int nt3h_check_address(void)
Ensure that the NFC EEPROM is at the expected device address.

Check that the NFC EEPROM responds. If it does not, find it on the bus by scanning all available addresses.
Once found, correct the address so there is no need to scan next time.

Check that the capability container is correct. If an external device has written to the tag, it may have been
altered. It is not safe to write the capability container just-in-case. This will wear out the EEPROM block.

Returns
0 if OK or 1 if the Capability Container is not correct.

void nt3h_update_cc(void)
Write the Capability Container.

Sets the CC to the values required for long NDEF messages.

The CC is 0 from the factory. It can also be altered by a phone that writes to the tag.

This is a blocking operation. It will not return until the write is done.

int nt3h_writetag(int eepromBlock, char *blkdata)
Write one block to the NFC EEPROM.

Parameters

• eepromBlock – [in] index of the block to write

• blkdata – [in] 16-byte array containing data to write

2.3. NT3H 19

cupl Tag Documentation, Release 0.0.1

Returns
A negative value if the write has failed.

int nt3h_readtag(int eepromBlock, char *blkdata)
Read one 16-byte block from the NFC EEPROM.

Parameters

• eepromBlock – [in] index of the block to read.

• blkdata – [out] 16-byte array into which the EEPROM block contents will be read.

void nt3h_clearlock(void)
Intended to clear the I2C_LOCKED bit in the NS_REG session register.

BUG. Does not affect NS_REG. Instead writes 0x06 to NC_REG, 0x40 to LAST_NDEF_BLOCK and 0x00 to
SRAM_MIRROR_BLOCK.

Does not do any harm, because the device is powered down immediately afterwards anyway. Remove in future.

int nt3h_eepromwritedone(void)
Check if an EEPROM write is in-progress.

Returns
2 when a write is in progress. Otherwise 0 when EEPROM access is possible.

Variables

unsigned char rxData[BLOCKSIZE] = {0}
Holds the content of one block.

int nsreg2

int nsreg3

2.4 I2C

Defines

HDC_DEVADDR

HDC2021 I2C bus device address.

NT3H_DEVADDR

NFC EEPROM I2C bus device address.

Communicates with devices on an I2C bus.

Configures the EUSCI peripheral as an I2C master. Up to 16 bytes can be written to or read from a memory address
on the I2C slave.

Author
Malcolm Mackay

20 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

Some devices embed up to 16 registers within each memory address. There is a function for reading one register only.

Defines

EUSCI_BASE

Base address of the EUSCI peripheral.

Functions

void i2c_init()
Initialise the EUSCI peripheral and I/O pins for I2C.

Weak pull-up resistors must be fitted to the I/O pins.

void i2c_off()
Put the EUSCI module into reset. Enable pull-downs on the I/O pins.

Floating pins waste power.

uint8_t i2c_write8(uint8_t sa, uint8_t mema, uint8_t txbyte)
Write one byte to the I2C device.

Blocks until the write has completed.

Parameters

• sa – [in] slave address

• mema – [in] memory address

• txbyte – [in] byte to write

int i2c_readreg(uint8_t sa, uint8_t mema, uint8_t rega)
Read one register on an I2C device.

Parameters

• sa – [in] slave address

• mema – [in] memory address

• rega – [in] register address

Returns
one byte of register data.

int i2c_write_block(uint8_t sa, uint8_t mema, uint8_t nbytes, uint8_t *txdata)
Write N bytes to the I2C device.

When NBYTES == 0:

| START | WRITE SA | MEMA | STOP |

When NBYTES >= 1:

| START | WRITE SA | MEMA | TXDATA[0] | TXDATA[. . .] | TXDATA[NBYTES-1] | STOP |

Parameters

• sa – [in] slave address.

• mema – [in] memory address.

2.4. I2C 21

cupl Tag Documentation, Release 0.0.1

• nbytes – [in] the number of bytes to write.

• txdata – [in] a pointer to the array of bytes to write.

int i2c_read_block(uint8_t sa, uint8_t mema, uint8_t nbytes, uint8_t *rxdata, uint8_t rega)
Read N bytes from the I2C device.

When a register address is specified:

| START | WRITE SA | MEMA | REGA | STOP | START | READ SA | BYTE0 | BYTE . . . | BYTE n-1 | STOP |

When no register address is specified:

| START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE . . . | BYTE n-1 | STOP |

Parameters

• sa – [in] slave address.

• mema – [in] memory address.

• nbytes – [in] the number of bytes to read.

• rxdata – [out] a pointer to an array used to store read data. Must be at least nbytes long.

• rega – [in] register address. Set to 0xFF when a register read is not required.

Returns
-1 when the slave fails to respond, otherwise zero.

uint8_t i2c_read8(uint8_t sa, uint8_t mema)
Read one byte from memory on the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | STOP.

Parameters

• sa – [in] slave address.

• mema – [in] memory address.

Returns
one byte read from the I2C slave.

uint16_t i2c_read16(uint8_t sa, uint8_t mema)
Read two bytes from memory on the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE1 | STOP.

Parameters

• sa – [in] slave address.

• mema – [in] memory address.

Returns
one little-endian 16-bit integer read from the I2C slave.

uint16_t i2c_read16x2(uint8_t sa, uint8_t mema, uint16_t *uint0, uint16_t *uint1)
Read two consecutive unsigned integers from the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE1 | BYTE2 | BYTE3 | STOP.

Parameters

• sa – [in] slave address.

• mema – [in] memory address.

22 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

• uint0 – [out] pointer to an address for storing the first little endian unsigned integer.

• uint1 – [out] pointer to an address for strong the second little endian unsigned integer.

void USCIB0_ISR(void)

Variables

uint8_t buffer[16] = {0}
Read or write buffer. This is declared volatile because it is accessed from an ISR.

uint8_t bytesLength = 0
Transaction length. This is declared volatile because it is read from an ISR.

uint8_t gbl_regOffset = 0
Memory address. Volatile because it is read from an ISR.

bool restartTx = false

bool nackFlag = false

bool stopFlag = false

bool restartRx = false

2.5 Stat

Functions

void stat_rdrstcause()
Find what has caused the latest reset by reading the System Reset Interrupt Vector register.

This function sets bits in the global variable rstcause, which is initialised to zero. Only the highest priority
interrupt is read.

int stat_rstcause_is_lpm5wu()
Check if the reset was caused by a routine wakeup from LPMx.5.

LPMx.5 is entered each time the state machine runs during normal operation. This is to minimise power con-
sumption. The Program Counter resets to zero and RAM is powered down. The Real Time Clock (RTC) periph-
eral triggers a reset (and an exit from LPMx.5) after one minute has elapsed.

The stat_rdrstcause() function must be called first.

Returns
Non-zero when the reset has been caused by a wake-up from LPMx.5

void stat_setclockfailure()
Set the clock failure bit in the rstcause global variable.

2.5. Stat 23

cupl Tag Documentation, Release 0.0.1

unsigned int stat_get(bool *err, bool *borsvs, int resetsalltime)
Get status information from the rstcause global variable.

Parameters

• err – [out] Pointer to an error flag. The flag is set if the latest reset has been caused by an
error.

• borsvs – [out] Pointer to the Brownout or SVS reset flag. The flag is set if the latest reset
has been caused by a voltage drop to the SVSH or BOR levels.

• resetsalltime – [in] Number of resets that have occurred from the factory.

Returns
A 16-bit status word for inclusion in the URL by cuplCodec. The upper byte is resetsalltime/16.
The lower byte is a copy of the rstcause variable.

Variables

unsigned int rstcause = 0
Reset cause global variable.

2.6 Config NFC

Defines

EEPROM_USERMEM_FIRST_BLOCK

Index of the first 16-byte block of unprotected user memory.

NDEF_RECORDTYPE_TEXT

NDEF text record type.

PAYLOADSTART_SHORTREC_INDEX

NDEF record payload starts at this byte within EEPROM block 1.

RECORDTYPE_SHORTREC_INDEX

Index corresponding to NDEF record type. Only correct for short NDEF records.

PAYLOADLEN_SHORTREC_INDEX

Index corresponding to NDEF record length. Only correct for short NDEF records.

CONFIGSTR_STARTCHAR

Marks the start of a configuration string.

CONFIGSTR_DELIMCHAR

Separates the ID from a value in a configuration string.

CONFIGSTR_ENDCHAR

Marks the end of a configuration string.

24 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

Enums

enum parserstate_t
Values:

enumerator findstartchar
Search for the config string start character.

enumerator storeid
Read the ID byte.

enumerator checkdelimiter
Check for the delimiter byte.

enumerator storevalue
Copy the configuration string value into msgblock.

Functions

int confignfc_check()
Read the first block of NFC EEPROM user memory. Check if it contains an NDEF text record.

Configuration data are written as strings in the text record.

Returns
1 if a short text record is present, otherwise 0.

int confignfc_parse()
Parse the NDEF text record into configuration strings. Writing configuration to NVM.

Configuration strings are formatted as:

<c:xyz>

Where:

‘<’ is the start character.

‘c’ is the ID.

‘:’ is the delimiter.

‘xyz’ is the value.

‘>’ is the end character.

The text record can contain one or more strings. There is no separator character between them.

Configuration strings are written to non-volatile memory with nvparams_write().

2.6. Config NFC 25

cupl Tag Documentation, Release 0.0.1

Variables

static char readbuffer[BLKSIZE]
Holds one 16-byte EEPROM block.

unsigned char msgblock[64]
Re-use an array declared as part of cuplcodec for calculating the MD5 checksum.

2.7 Comms UART

Defines

UART_BAUDRATE

Typedefs

typedef enum ustat t_ustat

Enums

enum ustat
Values:

enumerator ustat_running

enumerator ustat_waiting

enumerator ustat_finished

Functions

t_ustat uart_run()

Defines

HW_VERSION

FW_VERSION

XSTR(V)

26 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

STR(V)

VERSION

EXIT_STATE

ENTRY_STATE

INDEX_ID

INDEX_VAL

Typedefs

typedef enum uart_ret_codes t_uretcode

typedef enum uart_event_codes t_uevent

typedef enum uart_state_codes t_ustate

Enums

enum uart_ret_codes
Values:

enumerator rc_ok

enumerator rc_fail

enumerator rc_wait

enum uart_event_codes
Values:

enumerator evt_none

enumerator evt_rxdone

enumerator evt_txdone

enum uart_state_codes
Values:

2.7. Comms UART 27

cupl Tag Documentation, Release 0.0.1

enumerator uartsc_init

enumerator uartsc_txboot

enumerator uartsc_prepRx

enumerator uartsc_waitforRx

enumerator uartsc_pcktrxed

enumerator uartsc_prepTx

enumerator uartsc_waitforTx

enumerator uartsc_error

Functions

t_uretcode uart_init(t_uevent evt)

t_uretcode uart_txboot(t_uevent evt)

t_uretcode uart_prepRx(t_uevent evt)

t_uretcode uart_waitforRx(t_uevent evt)

t_uretcode uart_pcktrxed(t_uevent evt)

t_uretcode uart_prepTx(t_uevent evt)

t_uretcode uart_waitforTx(t_uevent evt)

t_uretcode uart_error(t_uevent evt)

static t_ustate lookup_transitions(t_ustate curstate, t_uretcode rc)

t_ustat uart_run()

__interrupt void USCI_A0_ISR (void)

Variables

static char __version__ [] = "<x:" VERSION ">"

static t_uretcode (*ustate_fcns[])(t_uevent) = {uart_init, uart_txboot, uart_prepRx, uart_waitforRx,
uart_pcktrxed, uart_prepTx, uart_waitforTx, uart_error}

28 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

struct utransition ustate_transitions[] = {{uartsc_init, rc_ok, uartsc_txboot}, {uartsc_txboot, rc_ok,
uartsc_prepTx}, {uartsc_prepRx, rc_ok, uartsc_waitforRx}, {uartsc_waitforRx, rc_ok, uartsc_pcktrxed},
{uartsc_waitforRx, rc_wait, uartsc_waitforRx}, {uartsc_pcktrxed, rc_ok, uartsc_prepTx}, {uartsc_pcktrxed, rc_wait,
uartsc_pcktrxed}, {uartsc_prepTx, rc_ok, uartsc_waitforTx}, {uartsc_waitforTx, rc_ok, uartsc_prepRx},
{uartsc_waitforTx, rc_wait, uartsc_waitforTx}}

uint8_t uartBuffer[72]

unsigned int bufIndex = 0

int drdyFlag = 0

int txDoneFlag = 0

static t_ustate cur_state = ENTRY_STATE

struct utransition

Public Members

t_ustate src_state

t_uretcode ret_code

t_ustate dst_state

2.8 Non-Volatile Parameters

Reads and writes parameters in non-volatile memory (FRAM).

The cuplTag (and cuplcodec) is configured with a small set of parameters. These control the tag serial string, the
sampling interval or the URL of the web application that decodes the tag contents.

A parameter has a single-byte identifier e.g. ‘w’ and a value. The length of the value field depends on the parameter.
For example, the serial string consists of eight bytes (e.g. ‘AB43xkp4’).

A variable is used to monitor how many parameters have been written since the last power cycle. A full set of parameters
is needed for the program to proceed.

2.8. Non-Volatile Parameters 29

cupl Tag Documentation, Release 0.0.1

Defines

NVPARAM_SERIAL_ID

Serial ID

NVPARAM_SECKEY_ID

Secret key ID

NVPARAM_BASEURL_ID

Base URL of the cupl web application ID

NVPARAM_FMT_ID

Sample format ID

NVPARAM_SMPLINT_ID

Sample interval ID

NVPARAM_MINVOLT_ID

Minimum operating voltage (in mV) ID

NVPARAM_HTTPSDIS_ID

Disable HTTPS ID

NVPARAM_USEHMAC_ID

Use HMAC ID

SERIAL_PARAM_WRITTEN

SECKEY_PARAM_WRITTEN

FMT_PARAM_WRITTEN

SMPLINT_PARAM_WRITTEN

MINVOLT_PARAM_WRITTEN

BASEURL_PARAM_WRITTEN

HTTPSDIS_PARAM_WRITTEN

USEHMAC_PARAM_WRITTEN

ALL_PARAMS_WRITTEN

0xFF in the ‘paramswritten’ RAM variable indicates that all parameters have been written.

30 Chapter 2. Reference

cupl Tag Documentation, Release 0.0.1

NVM_ALL_PARAMS_WRITTEN

Zero in NVM indicates that all parameters have been written. Why zero? After programming, the initial value
for this NVM section is 0xFF.

MINUTES_PER_DAY

INTEGERFIELD_LENBYTES

Value up to 65535 (5 ASCII digits)

DISABLE_FRAM_DATA_WRITEPROTECT

Clear the Data FRAM Write Protect bit.

ENABLE_FRAM_DATA_WRITEPROTECT

Set the Data FRAM Write Protect bit.

Functions

char *nvparams_getserial()
Get the 8-character alphanumeric serial string.

This is used to identify a cuplTag to the server. It is included in the URL.

Returns
A pointer to the serial string.

char *nvparams_getsecretkey()
Get the secret key used by cuplcodec to calculate an HMAC-MD5.

The secret key is unique per tag. It is known only to the web server and the tag. It is used to generate a Hash
based Message Authenticity Code, which prevents an ‘imposter tag’ from writing sample data to the web server.

Returns
A pointer to the secret key, which is SECKEY_LENBYTES long.

unsigned int nvparams_getminvoltagemv(void)
Get the minimum operating voltage parameter.

If the battery voltage is allowed to drop to the brown-out voltage, then the NFC EEPROM will be left with stale
data. There will be insufficient power to overwrite this with a ‘low power’ message, because the MSP430 will
be stuck in a reset loop.

This parameter should be slightly higher than the brown-out voltage e.g. 2200mV. When it is reached, the
sampling loop will stop, sample data removed and the user will be notified.

Returns
Minimum operating voltage in millivolts.

unsigned int nvparams_getsmplintmins()
Get the sample interval in minutes.

Temperature/humidity sensor samples are written to the circular buffer at this interval.

Returns
The sample interval in minutes as a 16-bit unsigned integer.

2.8. Non-Volatile Parameters 31

cupl Tag Documentation, Release 0.0.1

long nvparams_getsleepintmins()
Get the sleep interval in minutes (deprecated).

This NVM parameter is not used.

Returns
The tag sleep interval in minutes.

bool nvparams_allwritten()
Check that the cuplTag is fully configured.

Returns
‘true’ if all NVM parameters have been written.

int nvparams_getresetsperloop()
Get resets per loop.

Returns
The number of resets that have occurred during the present ‘loop’ of the circular buffer.

int nvparams_getresetsalltime()

Returns
The number of resets that have occurred from the factory.

void nvparams_cresetsperloop()
Clear resets per loop.

Clear the number of resets that has occurred during the present ‘loop’ of the circular buffer. This should be done
each time data wraps from the end of the circular buffer back to the start.

void nvparams_incrcounters()
Increment both reset counters in NVM.

bool nvparams_write(char id, char *valptr, unsigned int vlen)
Write a parameter to non-volatile memory.

A parameter consists of an ID (one byte) and a value (one or more bytes).

Parameters

• id – [in] parameter ID.

• valptr – [in] pointer to an array that contains the parameter value.

• vlen – [in] length of the value in bytes.

Returns
true if the parameter ID is recognised and its value has the correct length in bytes. Otherwise
false.

Variables

nv_t nv

unsigned int paramswritten = 0
Bits are set in this integer that correspond to parameters written since the last power cycle.

32 Chapter 2. Reference

https://cupl.readthedocs.io/projects/codec/en/latest/docs/reference/c_encoder/nvtype.html#_CPPv44nv_t

cupl Tag Documentation, Release 0.0.1

2.9 Battery Voltage

Functions

static void adc_enable()

static void adc_disable()

unsigned int batv_measure()

unsigned int batv_to_mv(unsigned int batv)

void ADC_ISR(void)

Variables

unsigned int adcvoltage = 0

2.9. Battery Voltage 33

cupl Tag Documentation, Release 0.0.1

34 Chapter 2. Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

35

cupl Tag Documentation, Release 0.0.1

36 Chapter 3. Indices and tables

INDEX

A
adc_disable (C++ function), 33
adc_enable (C++ function), 33
ADC_ISR (C++ function), 33
adcvoltage (C++ member), 33
ADDR_7b_MAX (C macro), 18
ADDR_7b_MIN (C macro), 18
ALL_PARAMS_WRITTEN (C macro), 30

B
BASEURL_PARAM_WRITTEN (C macro), 30
batv_measure (C++ function), 33
batv_to_mv (C++ function), 33
BLOCK0 (C macro), 18
BLOCK_SESSION (C macro), 18
BLOCKSIZE (C macro), 19
buffer (C++ member), 23
bufIndex (C++ member), 29
bytesLength (C++ member), 23

C
CC0_MAGIC (C macro), 19
CC1_VER (C macro), 19
CC2_NBYTESBY8 (C macro), 19
CC_OFFSET (C macro), 18
confignfc_check (C++ function), 25
confignfc_parse (C++ function), 25
CONFIGSTR_DELIMCHAR (C macro), 24
CONFIGSTR_ENDCHAR (C macro), 24
CONFIGSTR_STARTCHAR (C macro), 24
CP10MS (C macro), 7
CS_SMCLK_DESIRED_FREQUENCY_IN_KHZ (C macro), 7
CS_XT1_CRYSTAL_FREQUENCY (C macro), 7
CS_XT1_TIMEOUT (C macro), 7
cur_state (C++ member), 29

D
DEVADDR_OFFSET (C macro), 18
DEVCONF_DRDY_INTEN_BIT (C macro), 17
DEVCONF_REGADDR (C macro), 16
DEVCONF_SOFT_RES_BIT (C macro), 17
DEVIDH_REGADDR (C macro), 17

DEVIDL_REGADDR (C macro), 17
DISABLE_FRAM_DATA_WRITEPROTECT (C macro), 31
drdyFlag (C++ member), 29

E
EEPROM_USERMEM_FIRST_BLOCK (C macro), 24
ENABLE_FRAM_DATA_WRITEPROTECT (C macro), 31
end_state (C++ function), 13
ENTRY_STATE (C macro), 7, 27
err_msg (C++ function), 13
EUSCI_BASE (C macro), 21
event_codes (C++ enum), 10
event_codes::evt_hdcint (C++ enumerator), 10
event_codes::evt_none (C++ enumerator), 10
event_codes::evt_timerfinished (C++ enumera-

tor), 10
EXIT_STATE (C macro), 7, 27

F
FMT_PARAM_WRITTEN (C macro), 30
fram_write_disable (C++ function), 11
fram_write_enable (C++ function), 11
FW_VERSION (C macro), 26

G
gbl_regOffset (C++ member), 23

H
hdc2021_init (C++ function), 17
hdc2021_read_temprh (C++ function), 17
hdc2021_read_whoami (C++ function), 18
hdc2021_startconv (C++ function), 17
HDC_DEVADDR (C macro), 20
hdcFlag (C++ member), 15
HTTPSDIS_PARAM_WRITTEN (C macro), 30
HUMH_REGADDR (C macro), 16
HUML_REGADDR (C macro), 16
HUMOFFSETADJ_REGADDR (C macro), 16
HW_VERSION (C macro), 26

I
i2c_init (C++ function), 21

37

cupl Tag Documentation, Release 0.0.1

i2c_off (C++ function), 21
i2c_read16 (C++ function), 22
i2c_read16x2 (C++ function), 22
i2c_read8 (C++ function), 22
i2c_read_block (C++ function), 22
i2c_readreg (C++ function), 21
i2c_write8 (C++ function), 21
i2c_write_block (C++ function), 21
INDEX_ID (C macro), 27
INDEX_VAL (C macro), 27
init_batvwait (C++ function), 12
init_configcheck (C++ function), 11
init_errorcheck (C++ function), 12
init_ntag (C++ function), 11
init_progmode (C++ function), 11
init_reqmemon (C++ function), 11
init_rtc_1min (C++ function), 13
init_rtc_slow (C++ function), 12
init_state (C++ function), 11
init_waitmemon (C++ function), 11
init_wakeupcheck (C++ function), 12
INTEGERFIELD_LENBYTES (C macro), 31
INTEN_DRDYEN_BIT (C macro), 17
INTEN_REGADDR (C macro), 16

L
lookup_transitions (C++ function), 14, 28

M
main (C++ function), 15
MANFIDH_REGADDR (C macro), 17
MANFIDL_REGADDR (C macro), 17
MEASCONF_MEAS_TRIG_BIT (C macro), 17
MEASCONF_REGADDR (C macro), 17
memoff (C++ function), 14
minutecounter (C++ member), 15
MINUTES_PER_DAY (C macro), 31
MINVOLT_PARAM_WRITTEN (C macro), 30
msgblock (C++ member), 26

N
nackFlag (C++ member), 23
NDEF_RECORDTYPE_TEXT (C macro), 24
ndefmsg_badtrns (C++ member), 15
ndefmsg_noconfig (C++ member), 15
ndefmsg_progmode (C++ member), 15
nsreg2 (C++ member), 20
nsreg3 (C++ member), 20
NSREG_EEPROM_WR_BUSY (C macro), 18
NSREG_OFFSET (C macro), 18
nt3h_check_address (C++ function), 19
nt3h_clearlock (C++ function), 20
NT3H_DEVADDR (C macro), 20
nt3h_eepromwritedone (C++ function), 20

nt3h_init_wrongaddress (C++ function), 19
nt3h_readtag (C++ function), 20
nt3h_update_cc (C++ function), 19
nt3h_writetag (C++ function), 19
nv (C++ member), 32
NVM_ALL_PARAMS_WRITTEN (C macro), 30
NVPARAM_BASEURL_ID (C macro), 30
NVPARAM_FMT_ID (C macro), 30
NVPARAM_HTTPSDIS_ID (C macro), 30
NVPARAM_MINVOLT_ID (C macro), 30
NVPARAM_SECKEY_ID (C macro), 30
NVPARAM_SERIAL_ID (C macro), 30
NVPARAM_SMPLINT_ID (C macro), 30
NVPARAM_USEHMAC_ID (C macro), 30
nvparams_allwritten (C++ function), 32
nvparams_cresetsperloop (C++ function), 32
nvparams_getminvoltagemv (C++ function), 31
nvparams_getresetsalltime (C++ function), 32
nvparams_getresetsperloop (C++ function), 32
nvparams_getsecretkey (C++ function), 31
nvparams_getserial (C++ function), 31
nvparams_getsleepintmins (C++ function), 31
nvparams_getsmplintmins (C++ function), 31
nvparams_incrcounters (C++ function), 32
nvparams_write (C++ function), 32

P
paramswritten (C++ member), 32
parserstate_t (C++ enum), 25
parserstate_t::checkdelimiter (C++ enumera-

tor), 25
parserstate_t::findstartchar (C++ enumerator),

25
parserstate_t::storeid (C++ enumerator), 25
parserstate_t::storevalue (C++ enumerator), 25
PAYLOADLEN_SHORTREC_INDEX (C macro), 24
PAYLOADSTART_SHORTREC_INDEX (C macro), 24

R
readbuffer (C++ member), 26
RECORDTYPE_SHORTREC_INDEX (C macro), 24
reqmemon (C++ function), 14
restartRx (C++ member), 23
restartTx (C++ member), 23
ret_codes (C++ enum), 9
ret_codes::tr_deepsleep (C++ enumerator), 10
ret_codes::tr_fail (C++ enumerator), 10
ret_codes::tr_hdcreq (C++ enumerator), 10
ret_codes::tr_lowbat (C++ enumerator), 10
ret_codes::tr_newconfig (C++ enumerator), 10
ret_codes::tr_ok (C++ enumerator), 9
ret_codes::tr_por (C++ enumerator), 10
ret_codes::tr_prog (C++ enumerator), 10
ret_codes::tr_samplingloop (C++ enumerator), 10

38 Index

cupl Tag Documentation, Release 0.0.1

ret_codes::tr_updatemin (C++ enumerator), 10
ret_codes::tr_wait (C++ enumerator), 10
rstcause (C++ member), 24
rxData (C++ member), 20

S
SECKEY_PARAM_WRITTEN (C macro), 30
SERIAL_PARAM_WRITTEN (C macro), 30
smpl_checkcounter (C++ function), 13
smpl_hdcread (C++ function), 13
smpl_hdcreq (C++ function), 13
smpl_hdcwait (C++ function), 13
smpl_wait (C++ function), 13
SMPLINT_PARAM_WRITTEN (C macro), 30
start_timer (C++ function), 14
STAT_DRDY_STATUS_BIT (C macro), 17
stat_get (C++ function), 23
stat_rdrstcause (C++ function), 23
STAT_REGADDR (C macro), 16
stat_rstcause_is_lpm5wu (C++ function), 23
stat_setclockfailure (C++ function), 23
state_codes (C++ enum), 8
state_codes::sc_end (C++ enumerator), 9
state_codes::sc_err_msg (C++ enumerator), 9
state_codes::sc_init (C++ enumerator), 8
state_codes::sc_init_batvwait (C++ enumera-

tor), 9
state_codes::sc_init_configcheck (C++ enumer-

ator), 9
state_codes::sc_init_errorcheck (C++ enumera-

tor), 9
state_codes::sc_init_ntag (C++ enumerator), 8
state_codes::sc_init_progmode (C++ enumera-

tor), 8
state_codes::sc_init_reqmemon (C++ enumera-

tor), 8
state_codes::sc_init_rtc_1min (C++ enumera-

tor), 9
state_codes::sc_init_rtc_slow (C++ enumera-

tor), 9
state_codes::sc_init_waitmemon (C++ enumera-

tor), 8
state_codes::sc_init_wakeupcheck (C++ enumer-

ator), 9
state_codes::sc_smpl_checkcounter (C++ enu-

merator), 9
state_codes::sc_smpl_hdcread (C++ enumerator),

9
state_codes::sc_smpl_hdcreq (C++ enumerator), 9
state_codes::sc_smpl_hdcwait (C++ enumerator),

9
state_codes::sc_smpl_wait (C++ enumerator), 9
state_fcns (C++ member), 15
state_transitions (C++ member), 15

stopFlag (C++ member), 23
STR (C macro), 26

T
t_uevent (C++ type), 27
t_uretcode (C++ type), 27
t_ustat (C++ type), 26
t_ustate (C++ type), 27
TEMPH_REGADDR (C macro), 16
TEMPL_REGADDR (C macro), 16
TEMPOFFSETADJ_REGADDR (C macro), 16
tevent (C++ type), 8
TIMER1_B0_ISR (C++ function), 15
timerFlag (C++ member), 15
transition (C++ struct), 15
transition::dst_state (C++ member), 16
transition::ret_code (C++ member), 16
transition::src_state (C++ member), 16
tretcode (C++ type), 8
tstate (C++ type), 8
txDoneFlag (C++ member), 29

U
UART_BAUDRATE (C macro), 26
uart_error (C++ function), 28
uart_event_codes (C++ enum), 27
uart_event_codes::evt_none (C++ enumerator), 27
uart_event_codes::evt_rxdone (C++ enumerator),

27
uart_event_codes::evt_txdone (C++ enumerator),

27
uart_init (C++ function), 28
uart_pcktrxed (C++ function), 28
uart_prepRx (C++ function), 28
uart_prepTx (C++ function), 28
uart_ret_codes (C++ enum), 27
uart_ret_codes::rc_fail (C++ enumerator), 27
uart_ret_codes::rc_ok (C++ enumerator), 27
uart_ret_codes::rc_wait (C++ enumerator), 27
uart_run (C++ function), 26, 28
uart_state_codes (C++ enum), 27
uart_state_codes::uartsc_error (C++ enumera-

tor), 28
uart_state_codes::uartsc_init (C++ enumera-

tor), 27
uart_state_codes::uartsc_pcktrxed (C++ enu-

merator), 28
uart_state_codes::uartsc_prepRx (C++ enumera-

tor), 28
uart_state_codes::uartsc_prepTx (C++ enumera-

tor), 28
uart_state_codes::uartsc_txboot (C++ enumera-

tor), 28

Index 39

cupl Tag Documentation, Release 0.0.1

uart_state_codes::uartsc_waitforRx (C++ enu-
merator), 28

uart_state_codes::uartsc_waitforTx (C++ enu-
merator), 28

uart_txboot (C++ function), 28
uart_waitforRx (C++ function), 28
uart_waitforTx (C++ function), 28
uartBuffer (C++ member), 29
USCIB0_ISR (C++ function), 23
USEHMAC_PARAM_WRITTEN (C macro), 30
ustat (C++ enum), 26
ustat::ustat_finished (C++ enumerator), 26
ustat::ustat_running (C++ enumerator), 26
ustat::ustat_waiting (C++ enumerator), 26
ustate_fcns (C++ member), 28
ustate_transitions (C++ member), 28
utransition (C++ struct), 29
utransition::dst_state (C++ member), 29
utransition::ret_code (C++ member), 29
utransition::src_state (C++ member), 29

V
VERSION (C macro), 27

W
waitmemon (C++ function), 14
wdog_kick (C++ function), 14
writetxt (C++ function), 14
WRONG_DEVADDR (C macro), 18

X
XSTR (C macro), 26

40 Index

	State Chart
	Not Configured
	Programming Mode
	First Run
	Sampling Loop

	Reference
	Main
	HDC2021
	NT3H
	I2C
	Stat
	Config NFC
	Comms UART
	Non-Volatile Parameters
	Battery Voltage

	Indices and tables
	Index

