

cupl Tag Documention

Firmware

	State Chart
	Not Configured

	Programming Mode

	First Run

	Sampling Loop

	Reference
	Main

	HDC2021

	NT3H

	I2C

	Stat

	Config NFC

	Comms UART

	Non-Volatile Parameters

	Battery Voltage

Indices and tables

	Index

	Module Index

	Search Page

State Chart

This might look intimidating at first. Sub-sections cover the most common
progressions through the state chart.

	Not Configured

	Programming Mode

	First Run

	Sampling Loop

[image: @startuml hide empty description [*] --> init_state init_state --> init_reqmemon: tr_ok init_reqmemon --> init_waitmemon: tr_ok init_waitmemon --> init_ntag: tr_ok init_waitmemon --> init_waitmemon: tr_wait init_ntag --> init_wakeupcheck: tr_ok init_ntag --> init_rtc_slow: tr_newconfig init_ntag --> init_progmode: tr_prog init_progmode --> init_progmode: tr_ok init_progmode --> init_progmode: tr_wait init_progmode --> err_msg: tr_fail init_wakeupcheck --> init_rtc_slow: tr_por init_wakeupcheck --> smpl_checkcounter: tr_samplingloop init_rtc_slow --> init_batvwait: tr_ok init_batvwait --> init_configcheck: tr_ok init_batvwait --> init_batvwait: tr_wait init_configcheck --> init_errorcheck: tr_ok init_configcheck --> [*]: tr_deepsleep init_errorcheck --> init_rtc_1min: tr_ok init_errorcheck --> [*]: tr_deepsleep init_rtc_1min --> smpl_checkcounter: tr_ok smpl_checkcounter --> smpl_hdcreq: tr_hdcreq smpl_checkcounter --> smpl_wait: tr_updatemin smpl_hdcreq --> smpl_hdcwait: tr_ok smpl_hdcwait --> smpl_hdcread: tr_ok smpl_hdcwait --> smpl_hdcwait: tr_wait smpl_hdcread --> smpl_wait: tr_ok smpl_hdcread --> [*]: tr_lowbat smpl_wait --> [*]: tr_deepsleep err_msg --> [*]: tr_deepsleep @enduml]

The state machine in main().

Not Configured

[image: @startuml hide empty description [*] --> init_state init_state #83f795 --> init_reqmemon: tr_ok init_reqmemon #83f795 --> init_waitmemon: tr_ok init_waitmemon #83f795 --> init_ntag: tr_ok init_waitmemon --> init_waitmemon: tr_wait init_ntag #83f795 --> init_wakeupcheck: tr_ok init_ntag --> init_rtc_slow: tr_newconfig init_wakeupcheck --> init_rtc_slow: tr_por init_rtc_slow #83f795 --> init_batvwait: tr_ok init_batvwait #83f795 --> init_configcheck: tr_ok init_batvwait --> init_batvwait: tr_wait init_configcheck #83f795 --> [*]: tr_deepsleep @enduml]

Startup does not continue when the configuration is incomplete.

Programming Mode

[image: @startuml hide empty description [*] --> init_state init_state #83f795 --> init_reqmemon: tr_ok init_reqmemon #83f795 --> init_waitmemon: tr_ok init_waitmemon #83f795 --> init_ntag: tr_ok init_waitmemon --> init_waitmemon: tr_wait init_ntag #83f795 --> init_progmode: tr_prog init_progmode #83f795 --> init_progmode: tr_ok init_progmode --> init_progmode: tr_wait @enduml]

The state machine branches to init_progmode() when the nPRG pin is LOW.

First Run

The following state chart shows how the cuplTag operates the first time
it is powered on with a good battery and a complete configuration.

After some initialisation, a sample is collected from the HDC2021 and
fed into cuplcodec.

[image: @startuml hide empty description [*] --> init_state init_state #83f795 --> init_reqmemon: tr_ok init_reqmemon #83f795 --> init_waitmemon: tr_ok init_waitmemon #83f795 --> init_ntag: tr_ok init_waitmemon --> init_waitmemon: tr_wait init_ntag #83f795 --> init_wakeupcheck: tr_ok init_ntag --> init_rtc_slow: tr_newconfig init_wakeupcheck --> init_rtc_slow: tr_por init_rtc_slow #83f795 --> init_batvwait: tr_ok init_batvwait #83f795--> init_configcheck: tr_ok init_batvwait --> init_batvwait: tr_wait init_configcheck #83f795 --> init_errorcheck: tr_ok init_configcheck --> [*]: tr_deepsleep init_errorcheck #83f795 --> init_rtc_1min: tr_ok init_errorcheck --> [*]: tr_deepsleep init_rtc_1min #83f795 --> smpl_checkcounter: tr_ok smpl_checkcounter #83f795 --> smpl_hdcreq: tr_hdcreq smpl_checkcounter --> smpl_wait: tr_updatemin smpl_hdcreq #83f795 --> smpl_hdcwait: tr_ok smpl_hdcwait #83f795 --> smpl_hdcread: tr_ok smpl_hdcwait --> smpl_hdcwait: tr_wait smpl_hdcread #83f795 --> smpl_wait: tr_ok smpl_hdcread --> [*]: tr_lowbat smpl_wait #83f795 --> [*]: tr_deepsleep @enduml]

The state machine in main().

Sampling Loop

The cuplTag wakes up each minute. Several initialisation states are
skipped. The minute counter is incremented. If this equals the configured
sampling interval, then a sample is collected from the HDC2021.

cuplcodec updates the minute counter in the cupl URL (stored on the NFC EEPROM).
If a new sample is available, this is encoded and added to the circular buffer.

[image: @startuml hide empty description [*] --> init_state init_state #83f795 --> init_reqmemon: tr_ok init_reqmemon #83f795 --> init_waitmemon: tr_ok init_waitmemon #83f795 --> init_ntag: tr_ok init_waitmemon --> init_waitmemon: tr_wait init_ntag #83f795 --> init_wakeupcheck: tr_ok init_wakeupcheck #83f795 --> smpl_checkcounter: tr_samplingloop smpl_checkcounter #83f795 --> smpl_hdcreq: tr_hdcreq smpl_checkcounter --> smpl_wait: tr_updatemin smpl_hdcreq #83f795 --> smpl_hdcwait: tr_ok smpl_hdcwait #83f795 --> smpl_hdcread: tr_ok smpl_hdcwait --> smpl_hdcwait: tr_wait smpl_hdcread #83f795 --> smpl_wait: tr_ok smpl_hdcread --> [*]: tr_lowbat smpl_wait #83f795 --> [*]: tr_deepsleep @enduml]

The state machine runs each minute in the sampling loop.

Reference

	Main

	HDC2021

	NT3H

	I2C

	Stat

	Config NFC

	Comms UART

	Non-Volatile Parameters

	Battery Voltage

Main

Top-level Finite State Machine for controlling the MSP430 and cuplTag as a whole.

A Finite State Machine is defined in this file and run from main(). This has several features.
	Author
	Malcolm Mackay

It makes calls to drivers for communicating with the HDC2022 humidity sensor and the NT3H2111 NFC EEPROM.

It controls entry into the ‘programming mode’ sub state machine, where configuration strings can be written using a serial port.

It reads configuration strings from the NFC EEPROM if any are present.

It collects samples from an HDC2022 at a fixed time interval and passes these to the cuplcodec encoder.

Defines

	
CS_SMCLK_DESIRED_FREQUENCY_IN_KHZ

	Target frequency for SMCLK in kHz.

	
CS_XT1_CRYSTAL_FREQUENCY

	Resonant frequency of the XT1 crystal in kHz.

	
CS_XT1_TIMEOUT

	Timeout for XT1 to stabilise at the resonant frequency in SMCLK cycles.

	
CP10MS

	ACLK Cycles Per 10 MilliSeconds. Assumes ACLK = 32768 kHz and a divide-by-8.

	
EXIT_STATE

	State machine exit state.

	
ENTRY_STATE

	State machine entry state.

Typedefs

	
typedef enum state_codes tstate

	States in the Finite State Machine are represented by a code. This is used each time the state machine is run, to determine:

	Which state function to call in main().

	The next state in lookup_transitions().

	
typedef enum ret_codes tretcode

	Each state function returns at least one code from the list below. This is used by lookup_transitions() to determine the next state.

	
typedef enum event_codes tevent

	Events occur asynchronously to execution of the FSM. The MSP430 will typically wait for an event in sleep mode to save power. An example is an edge on the INT (interrupt) output from a temperature sensor. This is connected to an input on the MSP430, which is configured to call an Interrupt Service Routine (ISR). The ISR sets a flag and ‘wakes up’ the MSP430 from sleep mode.

The main() function is entered, flags are checked then cleared and the event variable is set according to the list of codes below. Finally, the state function is called with the event passed as an argument.

Multiple events can occur simultaneously, but only one at-a-time is passed to the FSM.

Enums

	
enum state_codes

	States in the Finite State Machine are represented by a code. This is used each time the state machine is run, to determine:

	Which state function to call in main().

	The next state in lookup_transitions().

Values:

	
enumerator sc_init

	State code for init_state()

	
enumerator sc_init_reqmemon

	State code for init_reqmemon()

	
enumerator sc_init_waitmemon

	State code for init_waitmemon()

	
enumerator sc_init_ntag

	State code for init_ntag()

	
enumerator sc_init_progmode

	State code for init_progmode()

	
enumerator sc_init_configcheck

	State code for init_configcheck()

	
enumerator sc_init_errorcheck

	State code for init_errorcheck()

	
enumerator sc_init_wakeupcheck

	State code for init_wakeupcheck()

	
enumerator sc_init_batvwait

	State code for init_batvwait()

	
enumerator sc_init_rtc_slow

	State code for init_rtc_slow()

	
enumerator sc_init_rtc_1min

	State code for init_rtc_1min()

	
enumerator sc_smpl_checkcounter

	State code for smpl_checkcounter()

	
enumerator sc_smpl_hdcreq

	State code for smpl_hdcreq()

	
enumerator sc_smpl_hdcwait

	State code for smpl_hdcwait()

	
enumerator sc_smpl_hdcread

	State code for smpl_hdcread()

	
enumerator sc_smpl_wait

	State code for smpl_wait()

	
enumerator sc_err_msg

	State code for err_msg()

	
enumerator sc_end

	State code for end_state()

	
enum ret_codes

	Each state function returns at least one code from the list below. This is used by lookup_transitions() to determine the next state.

Values:

	
enumerator tr_ok

	

	
enumerator tr_prog

	

	
enumerator tr_newconfig

	

	
enumerator tr_hdcreq

	Request a sample from the HDC2021 sensor.

	
enumerator tr_updatemin

	

	
enumerator tr_deepsleep

	cuplTag should enter a deep sleep state LPM3.5

	
enumerator tr_lowbat

	

	
enumerator tr_fail

	

	
enumerator tr_samplingloop

	cuplTag is in the sampling loop. The reset was caused by an exit from LPM3.5

	
enumerator tr_por

	cuplTag is NOT in the sampling loop. A Power-On-Reset has occurred.

	
enumerator tr_wait

	cuplTag should enter a sleep state, such as LPM0, to wait for an event.

	
enum event_codes

	Events occur asynchronously to execution of the FSM. The MSP430 will typically wait for an event in sleep mode to save power. An example is an edge on the INT (interrupt) output from a temperature sensor. This is connected to an input on the MSP430, which is configured to call an Interrupt Service Routine (ISR). The ISR sets a flag and ‘wakes up’ the MSP430 from sleep mode.

The main() function is entered, flags are checked then cleared and the event variable is set according to the list of codes below. Finally, the state function is called with the event passed as an argument.

Multiple events can occur simultaneously, but only one at-a-time is passed to the FSM.

Values:

	
enumerator evt_none

	No event has occurred.

	
enumerator evt_timerfinished

	The timer peripheral has counted down to 0.

	
enumerator evt_hdcint

	Pin change interrupt received from the HDC2021 temperature and humidity sensor.

Functions

	
void fram_write_enable()

	Enable writes to program FRAM.

Some variables are stored in program FRAM. RAM cannot be used because state is lost in deep sleep mode (LPM3.5). The Program FRAM Write Protect bit must be cleared (and interrupts disabled) before a write.

	
void fram_write_disable()

	Disable writes to program FRAM.

Sets the Program FRAM Write Protect bit and re-enables interrupts.

	
tretcode init_state(tevent evt)

	Initialise clocks and IOs on the MSP430.

All IOs are configured into an initial state. The number of IOs left as inputs (default) must be minimised to reduce power consumption.

The slow Auxiliary Clock (ACLK) is sourced form the external 32.768 kHz crystal. An internal 10 kHz source is used by default. This is power hungry and drifts with temperature.

Next, the Phased-Locked Loop (DCO) generates an output frequency of 1 MHz, by multiplying the external 32.768 kHz crystal frequency up by 31.

Internal clocks MCLK and SMCLK are connected to the DCO output.

1 MHz was selected to minimise current draw from the high impedance coin cell battery. This results in a lower voltage drop after exiting the sleep state. Battery life is limited by this voltage drop. This is not the case if the source impedance is lower. Then it is best to operate at a higher frequency: up to 24 MHz.

Finally, the cause of the reset is read. The program needs to know whether this is just a routine wake-up from sleep (LPM3.5) or the result of a fault.

	
tretcode init_reqmemon(tevent evt)

	This state calls reqmemon().

	
tretcode init_waitmemon(tevent evt)

	This state calls waitmemon().

	
tretcode init_ntag(tevent evt)

	Initialise the dual-interface I2C+NFC EEPROM.

A call is made to ‘nt3h_check_address()’ to make sure the EEPROM is at device address 0x55.

The first EEPROM block is read to check for an NFC text record. If found, configuration strings are extracted and saved into non-volatile memory.

The capability container is written if it needs to be. These 4 bytes indicate that the tag contains an NDEF message.

The programming mode select pin (nPRG) is checked. If it is LOW, the return code is updated.

	
tretcode init_progmode(tevent evt)

	Run the programming mode sub-state machine.

Enables the serial port (UART) and responds to text commands.

It is only intended that this state be entered in a production environment, not by the end user.

The only way to exit is to reset the microcontroller. This can be done by sending a soft reset command ‘<z>’.

	
tretcode init_configcheck(tevent evt)

	Verifies that all configuration strings have been written.

The state machine cannot continue unless the tag is fully configured. There are no default settings.

When configuration is incomplete, a text-based error message is written to the tag and deep-sleep mode is entered.

	
tretcode init_errorcheck(tevent evt)

	Check for an error condition before continuing startup.

An error occurs if the reset was caused by a reason other than a new battery insertion.

When the battery voltage is below a threshold (set in NVM). The state machine should not get stuck in a loop, where an attempt is made to write to the NFC EEPROM before the micro-controller resets. Reset loops can wear out the EEPROM.

In the event of 10 consecutive resets that result in an error, or a single low battery reading:
	Report the most recent error in the cupl URL status word.

	Do not include any samples in the cupl URL.

	Go to a deep sleep state that prevents another reset cycle from occurring for some time.

Otherwise:
	Report the most recent error in the cupl URL but treat it as spurious.

	Allow the state machine to continue.

	Returns

	tr_deepsleep when 10 consecutive errors have occurred or the battery voltage is low. Otherwise indicate no errors with tr_ok.

	
tretcode init_wakeupcheck(tevent evt)

	Has the reset has been caused by a routine RTC wake-up?

In the sampling loop, Wake-ups from LPM3.5 occur every minute. These are invoked by an interrupt from the Real Time Clock peripheral.

This function first makes a call to stat_rstcause_is_lpm5wu(). Then it checks if the first integer in Backup Memory is 1. If it is, then the cuplTag is in the sampling loop.

	Returns

	tr_samplingloop if the cuplTag is in the sampling loop. Otherwise, indicate a power-on-reset with tr_por.

	
tretcode init_batvwait(tevent evt)

	Wait for the battery voltage to stabilise.

It takes some time for capacitors to charge after a battery is inserted. A timer is started in the previous state. The MSP430 waits here in low power mode.

	Parameters

	evt – [in] Event. When set to evt_timerfinished the state machine progresses.

	Returns

	tr_ok when the timer has finished. Otherwise tr_wait.

	
tretcode init_rtc_slow(tevent evt)

	Configure the Real Time Clock to peripheral to generate one interrupt every 30 minutes.

This is done to prevent the cuplTag from being stuck in the end_state when an error occurs during startup. This state must be entered before any possible transitions to the end_state.

Whatever the error, the cuplTag must wake up and try to start up again. A long time interval has been chosen so that the battery is not depleted.

	
tretcode init_rtc_1min(tevent evt)

	Configure the Real Time Clock peripheral to generate one interrupt every minute.

The cuplTag spends most of the time in a deep sleep mode LPM3.5 to save power. Each minute, it wakes up for a few milliseconds to collect a sample or to increment minutecounter.

TURBO MODE is a special feature that is useful for test purposes. When enabled, the interrupt occurs every 3 seconds. To enable, set the time interval parameter to 0.

	
tretcode smpl_checkcounter(tevent)

	

	
tretcode smpl_hdcreq(tevent evt)

	Request a sample from the HDC2021 sensor.

A sample is requested by the MSP430 with hdc2020_startconv(). When data is ready, the HDC2021 makes a HIGH to LOW transition on its INT pin. To save power, the MSP430 sleeps whilst the measurement is taken.

The MSP430 pin connected to INT is made to raise an interrupt when a falling edge is detected.

	
tretcode smpl_hdcwait(tevent evt)

	Wait in LPM3 whilst waiting for a data ready interrupt from the HDC2021 sensor.

	Returns

	tr_ok when a DRDY interrupt has been detected. Otherwise return tr_wait to indicate that the MSP430 should sleep.

	
tretcode smpl_hdcread(tevent)

	

	
tretcode smpl_wait(tevent)

	

	
tretcode err_msg(tevent evt)

	Write the NDEF message ndefmsg_badtrns to the NFC EEPROM.

Notify the developer that an invalid state machine transition has been requested. The user should never see this. This will occur if a transition has been requested that does not exist in the state_transitions table.

	
tretcode end_state(tevent evt)

	Put the MSP430 into deep sleep LPM3.5.

Minimise power consumption by powering down as much of the MSP430 (and cuplTag) as possible. Only the Real Time Clock and Backup Memory peripherals remain powered on.

The RTC can generate an interrupt to wake the MSP430 up. When this occurs, the program starts from a reset condition. Only the backup memory can be used to persist state.

This function disables GPIO interrupt sources. It stops any timers, in case these prevent LPM3.5 from being entered. It disables the watchdog, because this is power hungry and the RTC can be used instead (see init_rtc_slow()).

Most importantly it calls memoff() to make sure that the VMEM domain is powered down.

The Supply Voltage Supervisor is disabled to save power. It is not very useful in deep sleep mode. The battery voltage will decline very little between wake-ups from the RTC.

	Returns

	tr_ok but this is to keep the compiler happy. Deep sleep is entered before the function returns.

	
tstate lookup_transitions(tstate curstate, tretcode rc)

	Look up the next state in the Finite State Machine.

The look-up is performed by iterating through an array of transitions. An error state is returned if no match is found.

	Parameters

	
	curstate – [in] Current state.

	rc – [in] Code returned from the current state.

	Returns

	Next state.

	
static void writetxt(const char *msgptr, int len)

	Write an NDEF message to the NFC EEPROM.

The NDEF message normally contains one text record. It can be created with an external program and stored as a constant array. The function is used to display simple error messages to the end-user.

	Parameters

	
	msgptr – [in] Pointer an NDEF message array.

	len – [in] Length of the NDEF message.

	
static void wdog_kick()

	Kick the watchdog, to prevent it from timing out.

This is done by writing to the watchdog control register.

	
static void start_timer(unsigned int intervalCycles)

	Start a single-shot timer.

An interrupt fires when the timer has finished counting. The MSP430 can sleep in LPM3 whilst waiting for it. This saves power over delay loops.

The function is best suited to pausing execution for a short time (milliseconds).

	Parameters

	intervalCycles – [in] Number of 4.096 kHz clock cycles to count.

	
static void memoff()

	Power down the VMEM domain.

The load switch enable pin is set low, breaking the circuit between VDD and VMEM. This is done to save power in sleep mode. The NT3H2111 EEPROM will otherwise draw ~10uA.

	
static tretcode reqmemon(tevent evt)

	Enable power to the VMEM domain.

Configure a pin to receive interrupts from the humidity sensor. Set the load switch enable pin HIGH to power up the VMEM domain from VDD.

After this function has been called, the MSP430 must sleep whilst waiting for a Timer interrupt. When this fires, the VMEM voltage should be stable.

	
static tretcode waitmemon(tevent evt)

	Wait for the VMEM voltage to stabilise after power on.

Timer_B1 must be started with start_timer() prior to calling this function.

	Parameters

	evt – [in] Event. When set to evt_timerfinished, I2C is enabled and the state machine progresses.

	
void main(void)

	

	
void TIMER1_B0_ISR(void)

	

	
if ((P1IN &BIT1)==0)

	

Variables

	
int timerFlag = 0

	Flag set by the Timer Interrupt Service Routine.

	
int hdcFlag = 0

	Flag set by the HDC2021 humidity sensor data-ready Interrupt Service Routine.

	
int minutecounter = 0

	Incremented each time the sampling loop is run.

	
const char ndefmsg_progmode[] = {0x03, 0x3D, 0xD1, 0x01, 0x39, 0x54, 0x02, 0x65, 0x6E, 0x50, 0x72, 0x6F, 0x67, 0x72, 0x61, 0x6D, 0x6D, 0x69, 0x6E, 0x67, 0x20, 0x4D, 0x6F, 0x64, 0x65, 0x2E, 0x20, 0x43, 0x6F, 0x6E, 0x6E, 0x65, 0x63, 0x74, 0x20, 0x74, 0x6F, 0x20, 0x73, 0x65, 0x72, 0x69, 0x61, 0x6C, 0x20, 0x70, 0x6F, 0x72, 0x74, 0x20, 0x61, 0x74, 0x20, 0x39, 0x36, 0x30, 0x30, 0x20, 0x62, 0x61, 0x75, 0x64, 0x2E, 0xFE}

	Hard-coded NDEF message containing one text record “Programming Mode. Connect to serial port at 9600 baud.”

	
const char ndefmsg_noconfig[] = {0x03, 0x2D, 0xD1, 0x01, 0x29, 0x54, 0x02, 0x65, 0x6E, 0x43, 0x6F, 0x6E, 0x66, 0x69, 0x67, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6B, 0x20, 0x66, 0x61, 0x69, 0x6C, 0x65, 0x64, 0x2E, 0x20, 0x53, 0x65, 0x65, 0x20, 0x63, 0x75, 0x70, 0x6C, 0x54, 0x61, 0x67, 0x20, 0x64, 0x6F, 0x63, 0x73, 0x2E, 0xFE}

	Hard-coded NDEF message containing one text record “Config check failed. See cuplTag docs.”

	
const char ndefmsg_badtrns[] = {0x03, 0x27, 0xD1, 0x01, 0x23, 0x54, 0x02, 0x65, 0x6E, 0x45, 0x72, 0x72, 0x6F, 0x72, 0x3A, 0x20, 0x49, 0x6E, 0x76, 0x61, 0x6C, 0x69, 0x64, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x20, 0x74, 0x72, 0x61, 0x6E, 0x73, 0x69, 0x74, 0x69, 0x6F, 0x6E, 0x2E, 0xFE}

	Hard-coded NDEF message containing one text record “Error: Invalid state transition.”

	
tretcode (*state_fcns[])(tevent) = {init_state, init_reqmemon, init_waitmemon, init_ntag, init_progmode, init_configcheck, init_errorcheck, init_wakeupcheck, init_batvwait, init_rtc_slow, init_rtc_1min, smpl_checkcounter, smpl_hdcreq, smpl_hdcwait, smpl_hdcread, smpl_wait, err_msg, end_state}

	

	
struct transition state_transitions[]

	The state transition table.

	
struct transition

	
Public Members

	
tstate src_state

	Source state.

	
tretcode ret_code

	Code returned after executing a state function.

	
tstate dst_state

	Destination state.

HDC2021

A driver for the Texas Instruments HDC2021 [https://www.ti.com/product/HDC2021] temperature and humidity sensor.

Only the basic functionality is needed - to start the sensor in one-shot mode and collect a temperature and humidity measurement.

It is compatible with the HDC2022 [https://www.ti.com/product/HDC2022] and HDC2080 [https://www.ti.com/product/HDC2080] parts, which are electrically identical.

Defines

	
TEMPL_REGADDR

	Temperature Low register address.

	
TEMPH_REGADDR

	Temperature High register address.

	
HUML_REGADDR

	Humidity Low register address.

	
HUMH_REGADDR

	Humidity High register address.

	
STAT_REGADDR

	Status register address.

	
INTEN_REGADDR

	Interrupt enable register address.

	
TEMPOFFSETADJ_REGADDR

	Temperature offset adjustment register address.

	
HUMOFFSETADJ_REGADDR

	Humidity offset adjustment register address.

	
DEVCONF_REGADDR

	Device configuration (soft-reset and interrupt reporting) register address.

	
MEASCONF_REGADDR

	Measurement configuration register address.

	
MANFIDL_REGADDR

	Manufacturer ID low-byte address.

	
MANFIDH_REGADDR

	Manufacturer ID high-byte address.

	
DEVIDL_REGADDR

	Device ID low-byte address.

	
DEVIDH_REGADDR

	Device ID high-byte address.

	
MEASCONF_MEAS_TRIG_BIT

	Trigger a measurement when applied to MEASCONF_REGADDR

	
STAT_DRDY_STATUS_BIT

	Select the DRDY_STATUS bit from STAT_REGADDR

	
INTEN_DRDYEN_BIT

	Enable the DataReady Interrupt when applied to INTEN_REGADDR

	
DEVCONF_SOFT_RES_BIT

	Trigger a soft reset when applied to DEVCONF_REGADDR

	
DEVCONF_DRDY_INTEN_BIT

	Enable the DRDY/INTEN pin when applied to DEVCONF_REGADDR

Functions

	
int hdc2021_startconv()

	Trigger a one-shot conversion.

The HDC2021 is in one-shot mode. This function sends an I2C command to trigger the temperature and humidity measurement.

It also configures the interrupt pin on HDC2021 to make a high-to-low transition when the conversion data are ready. This takes ~500us, so the MSP430 can sleep in this time to save power.

	
int hdc2021_init()

	Initialise the HDC2021 in one-shot mode.

	
uint32_t hdc2021_read_temprh(int *temp12b, int *rh12b)

	Read temperature and humidity from the HDC2021.

	Parameters

	
	temp12b – [out] Pointer to a variable for storing the raw 12-bit temperature.

	rh12b – [out] Pointer to a variable for storing the raw 12-bit relative humidity.

	
int hdc2021_read_whoami()

	Read the Device ID registers.

	Returns

	A 16-bit Device ID. The expected value is 0x07D0.

NT3H

A driver for the NXP NT3H2111 [https://www.nxp.com/docs/en/data-sheet/NT3H2111_2211.pdf] NFC EEPROM.

Reads and writes memory on the NT3H2111 EEPROM using I2C. The memory is organised into 16-byte blocks from the I2C perspective.

BLOCK0 contains configuration data such as the Capability Container.

Defines

	
ADDR_7b_MIN

	Minimum value of a 7-bit device address.

	
ADDR_7b_MAX

	Maximum value of a 7-bit device address.

	
WRONG_DEVADDR

	A wrong NFC EEPROM device address.

	
BLOCK0

	Address of the first memory block.

	
BLOCK_SESSION

	Address of the memory block used for session registers.

	
DEVADDR_OFFSET

	Byte-offset of the Device Address within the first memory block.

	
CC_OFFSET

	Byte-offset of the Capability Container within the first memory block.

	
NSREG_OFFSET

	Byte-offset of the NS_REG session register.

	
NSREG_EEPROM_WR_BUSY

	Select the EEPROM Write Busy bit from NS_REG. Set to 1’b1 when a write is in progress.

	
BLOCKSIZE

	Block size in bytes.

	
CC0_MAGIC

	Byte 0 of the Capability Container. Magic number.

	
CC1_VER

	Byte 1 of the Capability Container. Version.

	
CC2_NBYTESBY8

	Byte 2 of the Capability Container. The number of bytes in memory divided by 8.

Functions

	
void nt3h_init_wrongaddress(void)

	Deliberately assign the wrong device address to the NFC EEPROM.

This can be called to re-create a problem where the NFC EEPROM ends up with the wrong device address.

Unfortunately, the device address is mutable and located in byte 0 of memory.

When power is running low, an unwanted transaction can occur (a series of zeroes) that clears the device address.

	
int nt3h_check_address(void)

	Ensure that the NFC EEPROM is at the expected device address.

Check that the NFC EEPROM responds. If it does not, find it on the bus by scanning all available addresses. Once found, correct the address so there is no need to scan next time.

Check that the capability container is correct. If an external device has written to the tag, it may have been altered. It is not safe to write the capability container just-in-case. This will wear out the EEPROM block.

	Returns

	0 if OK or 1 if the Capability Container is not correct.

	
void nt3h_update_cc(void)

	Write the Capability Container.

Sets the CC to the values required for long NDEF messages.

The CC is 0 from the factory. It can also be altered by a phone that writes to the tag.

This is a blocking operation. It will not return until the write is done.

	
int nt3h_writetag(int eepromBlock, char *blkdata)

	Write one block to the NFC EEPROM.

	Parameters

	
	eepromBlock – [in] index of the block to write

	blkdata – [in] 16-byte array containing data to write

	Returns

	A negative value if the write has failed.

	
int nt3h_readtag(int eepromBlock, char *blkdata)

	Read one 16-byte block from the NFC EEPROM.

	Parameters

	
	eepromBlock – [in] index of the block to read.

	blkdata – [out] 16-byte array into which the EEPROM block contents will be read.

	
void nt3h_clearlock(void)

	Intended to clear the I2C_LOCKED bit in the NS_REG session register.

BUG. Does not affect NS_REG. Instead writes 0x06 to NC_REG, 0x40 to LAST_NDEF_BLOCK and 0x00 to SRAM_MIRROR_BLOCK.

Does not do any harm, because the device is powered down immediately afterwards anyway. Remove in future.

	
int nt3h_eepromwritedone(void)

	Check if an EEPROM write is in-progress.

	Returns

	2 when a write is in progress. Otherwise 0 when EEPROM access is possible.

Variables

	
unsigned char rxData[BLOCKSIZE] = {0}

	Holds the content of one block.

	
int nsreg2

	

	
int nsreg3

	

I2C

Defines

	
HDC_DEVADDR

	HDC2021 I2C bus device address.

	
NT3H_DEVADDR

	NFC EEPROM I2C bus device address.

Communicates with devices on an I2C bus.

Configures the EUSCI peripheral as an I2C master. Up to 16 bytes can be written to or read from a memory address on the I2C slave.
	Author
	Malcolm Mackay

Some devices embed up to 16 registers within each memory address. There is a function for reading one register only.

Defines

	
EUSCI_BASE

	Base address of the EUSCI peripheral.

Functions

	
void i2c_init()

	Initialise the EUSCI peripheral and I/O pins for I2C.

Weak pull-up resistors must be fitted to the I/O pins.

	
void i2c_off()

	Put the EUSCI module into reset. Enable pull-downs on the I/O pins.

Floating pins waste power.

	
uint8_t i2c_write8(uint8_t sa, uint8_t mema, uint8_t txbyte)

	Write one byte to the I2C device.

Blocks until the write has completed.

	Parameters

	
	sa – [in] slave address

	mema – [in] memory address

	txbyte – [in] byte to write

	
int i2c_readreg(uint8_t sa, uint8_t mema, uint8_t rega)

	Read one register on an I2C device.

	Parameters

	
	sa – [in] slave address

	mema – [in] memory address

	rega – [in] register address

	Returns

	one byte of register data.

	
int i2c_write_block(uint8_t sa, uint8_t mema, uint8_t nbytes, uint8_t *txdata)

	Write N bytes to the I2C device.

When NBYTES == 0:

| START | WRITE SA | MEMA | STOP |

When NBYTES >= 1:

| START | WRITE SA | MEMA | TXDATA[0] | TXDATA[…] | TXDATA[NBYTES-1] | STOP |

	Parameters

	
	sa – [in] slave address.

	mema – [in] memory address.

	nbytes – [in] the number of bytes to write.

	txdata – [in] a pointer to the array of bytes to write.

	
int i2c_read_block(uint8_t sa, uint8_t mema, uint8_t nbytes, uint8_t *rxdata, uint8_t rega)

	Read N bytes from the I2C device.

When a register address is specified:

| START | WRITE SA | MEMA | REGA | STOP | START | READ SA | BYTE0 | BYTE … | BYTE n-1 | STOP |

When no register address is specified:

| START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE … | BYTE n-1 | STOP |

	Parameters

	
	sa – [in] slave address.

	mema – [in] memory address.

	nbytes – [in] the number of bytes to read.

	rxdata – [out] a pointer to an array used to store read data. Must be at least nbytes long.

	rega – [in] register address. Set to 0xFF when a register read is not required.

	Returns

	-1 when the slave fails to respond, otherwise zero.

	
uint8_t i2c_read8(uint8_t sa, uint8_t mema)

	Read one byte from memory on the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | STOP.

	Parameters

	
	sa – [in] slave address.

	mema – [in] memory address.

	Returns

	one byte read from the I2C slave.

	
uint16_t i2c_read16(uint8_t sa, uint8_t mema)

	Read two bytes from memory on the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE1 | STOP.

	Parameters

	
	sa – [in] slave address.

	mema – [in] memory address.

	Returns

	one little-endian 16-bit integer read from the I2C slave.

	
uint16_t i2c_read16x2(uint8_t sa, uint8_t mema, uint16_t *uint0, uint16_t *uint1)

	Read two consecutive unsigned integers from the I2C slave.

START | WRITE SA | MEMA | STOP | START | READ SA | BYTE0 | BYTE1 | BYTE2 | BYTE3 | STOP.

	Parameters

	
	sa – [in] slave address.

	mema – [in] memory address.

	uint0 – [out] pointer to an address for storing the first little endian unsigned integer.

	uint1 – [out] pointer to an address for strong the second little endian unsigned integer.

	
void USCIB0_ISR(void)

	

Variables

	
uint8_t buffer[16] = {0}

	Read or write buffer. This is declared volatile because it is accessed from an ISR.

	
uint8_t bytesLength = 0

	Transaction length. This is declared volatile because it is read from an ISR.

	
uint8_t gbl_regOffset = 0

	Memory address. Volatile because it is read from an ISR.

	
bool restartTx = false

	

	
bool nackFlag = false

	

	
bool stopFlag = false

	

	
bool restartRx = false

	

Stat

Functions

	
void stat_rdrstcause()

	Find what has caused the latest reset by reading the System Reset Interrupt Vector register.

This function sets bits in the global variable rstcause, which is initialised to zero. Only the highest priority interrupt is read.

	
int stat_rstcause_is_lpm5wu()

	Check if the reset was caused by a routine wakeup from LPMx.5.

LPMx.5 is entered each time the state machine runs during normal operation. This is to minimise power consumption. The Program Counter resets to zero and RAM is powered down. The Real Time Clock (RTC) peripheral triggers a reset (and an exit from LPMx.5) after one minute has elapsed.

The stat_rdrstcause() function must be called first.

	Returns

	Non-zero when the reset has been caused by a wake-up from LPMx.5

	
void stat_setclockfailure()

	Set the clock failure bit in the rstcause global variable.

	
unsigned int stat_get(bool *err, bool *borsvs, int resetsalltime)

	Get status information from the rstcause global variable.

	Parameters

	
	err – [out] Pointer to an error flag. The flag is set if the latest reset has been caused by an error.

	borsvs – [out] Pointer to the Brownout or SVS reset flag. The flag is set if the latest reset has been caused by a voltage drop to the SVSH or BOR levels.

	resetsalltime – [in] Number of resets that have occurred from the factory.

	Returns

	A 16-bit status word for inclusion in the URL by cuplCodec. The upper byte is resetsalltime/16. The lower byte is a copy of the rstcause variable.

Variables

	
unsigned int rstcause = 0

	Reset cause global variable.

Config NFC

Defines

	
EEPROM_USERMEM_FIRST_BLOCK

	Index of the first 16-byte block of unprotected user memory.

	
NDEF_RECORDTYPE_TEXT

	NDEF text record type.

	
PAYLOADSTART_SHORTREC_INDEX

	NDEF record payload starts at this byte within EEPROM block 1.

	
RECORDTYPE_SHORTREC_INDEX

	Index corresponding to NDEF record type. Only correct for short NDEF records.

	
PAYLOADLEN_SHORTREC_INDEX

	Index corresponding to NDEF record length. Only correct for short NDEF records.

	
CONFIGSTR_STARTCHAR

	Marks the start of a configuration string.

	
CONFIGSTR_DELIMCHAR

	Separates the ID from a value in a configuration string.

	
CONFIGSTR_ENDCHAR

	Marks the end of a configuration string.

Enums

	
enum parserstate_t

	Values:

	
enumerator findstartchar

	Search for the config string start character.

	
enumerator storeid

	Read the ID byte.

	
enumerator checkdelimiter

	Check for the delimiter byte.

	
enumerator storevalue

	Copy the configuration string value into msgblock.

Functions

	
int confignfc_check()

	Read the first block of NFC EEPROM user memory. Check if it contains an NDEF text record.

Configuration data are written as strings in the text record.

	Returns

	1 if a short text record is present, otherwise 0.

	
int confignfc_parse()

	Parse the NDEF text record into configuration strings. Writing configuration to NVM.

Configuration strings are formatted as:

<c:xyz>

Where:

‘<’ is the start character.

‘c’ is the ID.

‘:’ is the delimiter.

‘xyz’ is the value.

‘>’ is the end character.

The text record can contain one or more strings. There is no separator character between them.

Configuration strings are written to non-volatile memory with nvparams_write().

Variables

	
static char readbuffer[BLKSIZE]

	Holds one 16-byte EEPROM block.

	
unsigned char msgblock[64]

	Re-use an array declared as part of cuplcodec for calculating the MD5 checksum.

Comms UART

Defines

	
UART_BAUDRATE

	

Typedefs

	
typedef enum ustat t_ustat

	

Enums

	
enum ustat

	Values:

	
enumerator ustat_running

	

	
enumerator ustat_waiting

	

	
enumerator ustat_finished

	

Functions

	
t_ustat uart_run()

	

Defines

	
HW_VERSION

	

	
FW_VERSION

	

	
XSTR(V)

	

	
STR(V)

	

	
VERSION

	

	
EXIT_STATE

	

	
ENTRY_STATE

	

	
INDEX_ID

	

	
INDEX_VAL

	

Typedefs

	
typedef enum uart_ret_codes t_uretcode

	

	
typedef enum uart_event_codes t_uevent

	

	
typedef enum uart_state_codes t_ustate

	

Enums

	
enum uart_ret_codes

	Values:

	
enumerator rc_ok

	

	
enumerator rc_fail

	

	
enumerator rc_wait

	

	
enum uart_event_codes

	Values:

	
enumerator evt_none

	

	
enumerator evt_rxdone

	

	
enumerator evt_txdone

	

	
enum uart_state_codes

	Values:

	
enumerator uartsc_init

	

	
enumerator uartsc_txboot

	

	
enumerator uartsc_prepRx

	

	
enumerator uartsc_waitforRx

	

	
enumerator uartsc_pcktrxed

	

	
enumerator uartsc_prepTx

	

	
enumerator uartsc_waitforTx

	

	
enumerator uartsc_error

	

Functions

	
t_uretcode uart_init(t_uevent evt)

	

	
t_uretcode uart_txboot(t_uevent evt)

	

	
t_uretcode uart_prepRx(t_uevent evt)

	

	
t_uretcode uart_waitforRx(t_uevent evt)

	

	
t_uretcode uart_pcktrxed(t_uevent evt)

	

	
t_uretcode uart_prepTx(t_uevent evt)

	

	
t_uretcode uart_waitforTx(t_uevent evt)

	

	
t_uretcode uart_error(t_uevent evt)

	

	
static t_ustate lookup_transitions(t_ustate curstate, t_uretcode rc)

	

	
t_ustat uart_run()

	

	
__interrupt void USCI_A0_ISR (void)

	

Variables

	
static char __version__ [] = "<x:" VERSION ">"

	

	
static t_uretcode (*ustate_fcns[])(t_uevent) = {uart_init, uart_txboot, uart_prepRx, uart_waitforRx, uart_pcktrxed, uart_prepTx, uart_waitforTx, uart_error}

	

	
struct utransition ustate_transitions[] = {{uartsc_init, rc_ok, uartsc_txboot}, {uartsc_txboot, rc_ok, uartsc_prepTx}, {uartsc_prepRx, rc_ok, uartsc_waitforRx}, {uartsc_waitforRx, rc_ok, uartsc_pcktrxed}, {uartsc_waitforRx, rc_wait, uartsc_waitforRx}, {uartsc_pcktrxed, rc_ok, uartsc_prepTx}, {uartsc_pcktrxed, rc_wait, uartsc_pcktrxed}, {uartsc_prepTx, rc_ok, uartsc_waitforTx}, {uartsc_waitforTx, rc_ok, uartsc_prepRx}, {uartsc_waitforTx, rc_wait, uartsc_waitforTx}}

	

	
uint8_t uartBuffer[72]

	

	
unsigned int bufIndex = 0

	

	
int drdyFlag = 0

	

	
int txDoneFlag = 0

	

	
static t_ustate cur_state = ENTRY_STATE

	

	
struct utransition

	
Public Members

	
t_ustate src_state

	

	
t_uretcode ret_code

	

	
t_ustate dst_state

	

Non-Volatile Parameters

Reads and writes parameters in non-volatile memory (FRAM).

The cuplTag (and cuplcodec) is configured with a small set of parameters. These control the tag serial string, the sampling interval or the URL of the web application that decodes the tag contents.

A parameter has a single-byte identifier e.g. ‘w’ and a value. The length of the value field depends on the parameter. For example, the serial string consists of eight bytes (e.g. ‘AB43xkp4’).

A variable is used to monitor how many parameters have been written since the last power cycle. A full set of parameters is needed for the program to proceed.

Defines

	
NVPARAM_SERIAL_ID

	Serial ID

	
NVPARAM_SECKEY_ID

	Secret key ID

	
NVPARAM_BASEURL_ID

	Base URL of the cupl web application ID

	
NVPARAM_FMT_ID

	Sample format ID

	
NVPARAM_SMPLINT_ID

	Sample interval ID

	
NVPARAM_MINVOLT_ID

	Minimum operating voltage (in mV) ID

	
NVPARAM_HTTPSDIS_ID

	Disable HTTPS ID

	
NVPARAM_USEHMAC_ID

	Use HMAC ID

	
SERIAL_PARAM_WRITTEN

	

	
SECKEY_PARAM_WRITTEN

	

	
FMT_PARAM_WRITTEN

	

	
SMPLINT_PARAM_WRITTEN

	

	
MINVOLT_PARAM_WRITTEN

	

	
BASEURL_PARAM_WRITTEN

	

	
HTTPSDIS_PARAM_WRITTEN

	

	
USEHMAC_PARAM_WRITTEN

	

	
ALL_PARAMS_WRITTEN

	0xFF in the ‘paramswritten’ RAM variable indicates that all parameters have been written.

	
NVM_ALL_PARAMS_WRITTEN

	Zero in NVM indicates that all parameters have been written. Why zero? After programming, the initial value for this NVM section is 0xFF.

	
MINUTES_PER_DAY

	

	
INTEGERFIELD_LENBYTES

	Value up to 65535 (5 ASCII digits)

	
DISABLE_FRAM_DATA_WRITEPROTECT

	Clear the Data FRAM Write Protect bit.

	
ENABLE_FRAM_DATA_WRITEPROTECT

	Set the Data FRAM Write Protect bit.

Functions

	
char *nvparams_getserial()

	Get the 8-character alphanumeric serial string.

This is used to identify a cuplTag to the server. It is included in the URL.

	Returns

	A pointer to the serial string.

	
char *nvparams_getsecretkey()

	Get the secret key used by cuplcodec to calculate an HMAC-MD5.

The secret key is unique per tag. It is known only to the web server and the tag. It is used to generate a Hash based Message Authenticity Code, which prevents an ‘imposter tag’ from writing sample data to the web server.

	Returns

	A pointer to the secret key, which is SECKEY_LENBYTES long.

	
unsigned int nvparams_getminvoltagemv(void)

	Get the minimum operating voltage parameter.

If the battery voltage is allowed to drop to the brown-out voltage, then the NFC EEPROM will be left with stale data. There will be insufficient power to overwrite this with a ‘low power’ message, because the MSP430 will be stuck in a reset loop.

This parameter should be slightly higher than the brown-out voltage e.g. 2200mV. When it is reached, the sampling loop will stop, sample data removed and the user will be notified.

	Returns

	Minimum operating voltage in millivolts.

	
unsigned int nvparams_getsmplintmins()

	Get the sample interval in minutes.

Temperature/humidity sensor samples are written to the circular buffer at this interval.

	Returns

	The sample interval in minutes as a 16-bit unsigned integer.

	
long nvparams_getsleepintmins()

	Get the sleep interval in minutes (deprecated).

This NVM parameter is not used.

	Returns

	The tag sleep interval in minutes.

	
bool nvparams_allwritten()

	Check that the cuplTag is fully configured.

	Returns

	‘true’ if all NVM parameters have been written.

	
int nvparams_getresetsperloop()

	Get resets per loop.

	Returns

	The number of resets that have occurred during the present ‘loop’ of the circular buffer.

	
int nvparams_getresetsalltime()

	
	Returns

	The number of resets that have occurred from the factory.

	
void nvparams_cresetsperloop()

	Clear resets per loop.

Clear the number of resets that has occurred during the present ‘loop’ of the circular buffer. This should be done each time data wraps from the end of the circular buffer back to the start.

	
void nvparams_incrcounters()

	Increment both reset counters in NVM.

	
bool nvparams_write(char id, char *valptr, unsigned int vlen)

	Write a parameter to non-volatile memory.

A parameter consists of an ID (one byte) and a value (one or more bytes).

	Parameters

	
	id – [in] parameter ID.

	valptr – [in] pointer to an array that contains the parameter value.

	vlen – [in] length of the value in bytes.

	Returns

	true if the parameter ID is recognised and its value has the correct length in bytes. Otherwise false.

Variables

	
nv_t [https://cupl.readthedocs.io/projects/codec/en/latest/docs/reference/c_encoder/nvtype.html#_CPPv44nv_t] nv

	

	
unsigned int paramswritten = 0

	Bits are set in this integer that correspond to parameters written since the last power cycle.

Battery Voltage

Functions

	
static void adc_enable()

	

	
static void adc_disable()

	

	
unsigned int batv_measure()

	

	
unsigned int batv_to_mv(unsigned int batv)

	

	
void ADC_ISR(void)

	

Variables

	
unsigned int adcvoltage = 0

	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	adc_disable (C++ function)

 	adc_enable (C++ function)

 	ADC_ISR (C++ function)

 	
 	adcvoltage (C++ member)

 	ADDR_7b_MAX (C macro)

 	ADDR_7b_MIN (C macro)

 	ALL_PARAMS_WRITTEN (C macro)

B

 	
 	BASEURL_PARAM_WRITTEN (C macro)

 	batv_measure (C++ function)

 	batv_to_mv (C++ function)

 	BLOCK0 (C macro)

 	
 	BLOCK_SESSION (C macro)

 	BLOCKSIZE (C macro)

 	buffer (C++ member)

 	bufIndex (C++ member)

 	bytesLength (C++ member)

C

 	
 	CC0_MAGIC (C macro)

 	CC1_VER (C macro)

 	CC2_NBYTESBY8 (C macro)

 	CC_OFFSET (C macro)

 	confignfc_check (C++ function)

 	confignfc_parse (C++ function)

 	CONFIGSTR_DELIMCHAR (C macro)

 	
 	CONFIGSTR_ENDCHAR (C macro)

 	CONFIGSTR_STARTCHAR (C macro)

 	CP10MS (C macro)

 	CS_SMCLK_DESIRED_FREQUENCY_IN_KHZ (C macro)

 	CS_XT1_CRYSTAL_FREQUENCY (C macro)

 	CS_XT1_TIMEOUT (C macro)

 	cur_state (C++ member)

D

 	
 	DEVADDR_OFFSET (C macro)

 	DEVCONF_DRDY_INTEN_BIT (C macro)

 	DEVCONF_REGADDR (C macro)

 	DEVCONF_SOFT_RES_BIT (C macro)

 	
 	DEVIDH_REGADDR (C macro)

 	DEVIDL_REGADDR (C macro)

 	DISABLE_FRAM_DATA_WRITEPROTECT (C macro)

 	drdyFlag (C++ member)

E

 	
 	EEPROM_USERMEM_FIRST_BLOCK (C macro)

 	ENABLE_FRAM_DATA_WRITEPROTECT (C macro)

 	end_state (C++ function)

 	ENTRY_STATE (C macro), [1]

 	err_msg (C++ function)

 	
 	EUSCI_BASE (C macro)

 	event_codes (C++ enum)

 	event_codes::evt_hdcint (C++ enumerator)

 	event_codes::evt_none (C++ enumerator)

 	event_codes::evt_timerfinished (C++ enumerator)

 	EXIT_STATE (C macro), [1]

F

 	
 	FMT_PARAM_WRITTEN (C macro)

 	fram_write_disable (C++ function)

 	
 	fram_write_enable (C++ function)

 	FW_VERSION (C macro)

G

 	
 	gbl_regOffset (C++ member)

H

 	
 	hdc2021_init (C++ function)

 	hdc2021_read_temprh (C++ function)

 	hdc2021_read_whoami (C++ function)

 	hdc2021_startconv (C++ function)

 	HDC_DEVADDR (C macro)

 	
 	hdcFlag (C++ member)

 	HTTPSDIS_PARAM_WRITTEN (C macro)

 	HUMH_REGADDR (C macro)

 	HUML_REGADDR (C macro)

 	HUMOFFSETADJ_REGADDR (C macro)

 	HW_VERSION (C macro)

I

 	
 	i2c_init (C++ function)

 	i2c_off (C++ function)

 	i2c_read16 (C++ function)

 	i2c_read16x2 (C++ function)

 	i2c_read8 (C++ function)

 	i2c_read_block (C++ function)

 	i2c_readreg (C++ function)

 	i2c_write8 (C++ function)

 	i2c_write_block (C++ function)

 	INDEX_ID (C macro)

 	INDEX_VAL (C macro)

 	init_batvwait (C++ function)

 	
 	init_configcheck (C++ function)

 	init_errorcheck (C++ function)

 	init_ntag (C++ function)

 	init_progmode (C++ function)

 	init_reqmemon (C++ function)

 	init_rtc_1min (C++ function)

 	init_rtc_slow (C++ function)

 	init_state (C++ function)

 	init_waitmemon (C++ function)

 	init_wakeupcheck (C++ function)

 	INTEGERFIELD_LENBYTES (C macro)

 	INTEN_DRDYEN_BIT (C macro)

 	INTEN_REGADDR (C macro)

L

 	
 	lookup_transitions (C++ function), [1]

M

 	
 	main (C++ function)

 	MANFIDH_REGADDR (C macro)

 	MANFIDL_REGADDR (C macro)

 	MEASCONF_MEAS_TRIG_BIT (C macro)

 	MEASCONF_REGADDR (C macro)

 	
 	memoff (C++ function)

 	minutecounter (C++ member)

 	MINUTES_PER_DAY (C macro)

 	MINVOLT_PARAM_WRITTEN (C macro)

 	msgblock (C++ member)

N

 	
 	nackFlag (C++ member)

 	NDEF_RECORDTYPE_TEXT (C macro)

 	ndefmsg_badtrns (C++ member)

 	ndefmsg_noconfig (C++ member)

 	ndefmsg_progmode (C++ member)

 	nsreg2 (C++ member)

 	nsreg3 (C++ member)

 	NSREG_EEPROM_WR_BUSY (C macro)

 	NSREG_OFFSET (C macro)

 	nt3h_check_address (C++ function)

 	nt3h_clearlock (C++ function)

 	NT3H_DEVADDR (C macro)

 	nt3h_eepromwritedone (C++ function)

 	nt3h_init_wrongaddress (C++ function)

 	nt3h_readtag (C++ function)

 	nt3h_update_cc (C++ function)

 	nt3h_writetag (C++ function)

 	nv (C++ member)

 	NVM_ALL_PARAMS_WRITTEN (C macro)

 	
 	NVPARAM_BASEURL_ID (C macro)

 	NVPARAM_FMT_ID (C macro)

 	NVPARAM_HTTPSDIS_ID (C macro)

 	NVPARAM_MINVOLT_ID (C macro)

 	NVPARAM_SECKEY_ID (C macro)

 	NVPARAM_SERIAL_ID (C macro)

 	NVPARAM_SMPLINT_ID (C macro)

 	NVPARAM_USEHMAC_ID (C macro)

 	nvparams_allwritten (C++ function)

 	nvparams_cresetsperloop (C++ function)

 	nvparams_getminvoltagemv (C++ function)

 	nvparams_getresetsalltime (C++ function)

 	nvparams_getresetsperloop (C++ function)

 	nvparams_getsecretkey (C++ function)

 	nvparams_getserial (C++ function)

 	nvparams_getsleepintmins (C++ function)

 	nvparams_getsmplintmins (C++ function)

 	nvparams_incrcounters (C++ function)

 	nvparams_write (C++ function)

P

 	
 	paramswritten (C++ member)

 	parserstate_t (C++ enum)

 	parserstate_t::checkdelimiter (C++ enumerator)

 	parserstate_t::findstartchar (C++ enumerator)

 	
 	parserstate_t::storeid (C++ enumerator)

 	parserstate_t::storevalue (C++ enumerator)

 	PAYLOADLEN_SHORTREC_INDEX (C macro)

 	PAYLOADSTART_SHORTREC_INDEX (C macro)

R

 	
 	readbuffer (C++ member)

 	RECORDTYPE_SHORTREC_INDEX (C macro)

 	reqmemon (C++ function)

 	restartRx (C++ member)

 	restartTx (C++ member)

 	ret_codes (C++ enum)

 	ret_codes::tr_deepsleep (C++ enumerator)

 	ret_codes::tr_fail (C++ enumerator)

 	ret_codes::tr_hdcreq (C++ enumerator)

 	
 	ret_codes::tr_lowbat (C++ enumerator)

 	ret_codes::tr_newconfig (C++ enumerator)

 	ret_codes::tr_ok (C++ enumerator)

 	ret_codes::tr_por (C++ enumerator)

 	ret_codes::tr_prog (C++ enumerator)

 	ret_codes::tr_samplingloop (C++ enumerator)

 	ret_codes::tr_updatemin (C++ enumerator)

 	ret_codes::tr_wait (C++ enumerator)

 	rstcause (C++ member)

 	rxData (C++ member)

S

 	
 	SECKEY_PARAM_WRITTEN (C macro)

 	SERIAL_PARAM_WRITTEN (C macro)

 	smpl_checkcounter (C++ function)

 	smpl_hdcread (C++ function)

 	smpl_hdcreq (C++ function)

 	smpl_hdcwait (C++ function)

 	smpl_wait (C++ function)

 	SMPLINT_PARAM_WRITTEN (C macro)

 	start_timer (C++ function)

 	STAT_DRDY_STATUS_BIT (C macro)

 	stat_get (C++ function)

 	stat_rdrstcause (C++ function)

 	STAT_REGADDR (C macro)

 	stat_rstcause_is_lpm5wu (C++ function)

 	stat_setclockfailure (C++ function)

 	state_codes (C++ enum)

 	state_codes::sc_end (C++ enumerator)

 	state_codes::sc_err_msg (C++ enumerator)

 	state_codes::sc_init (C++ enumerator)

 	
 	state_codes::sc_init_batvwait (C++ enumerator)

 	state_codes::sc_init_configcheck (C++ enumerator)

 	state_codes::sc_init_errorcheck (C++ enumerator)

 	state_codes::sc_init_ntag (C++ enumerator)

 	state_codes::sc_init_progmode (C++ enumerator)

 	state_codes::sc_init_reqmemon (C++ enumerator)

 	state_codes::sc_init_rtc_1min (C++ enumerator)

 	state_codes::sc_init_rtc_slow (C++ enumerator)

 	state_codes::sc_init_waitmemon (C++ enumerator)

 	state_codes::sc_init_wakeupcheck (C++ enumerator)

 	state_codes::sc_smpl_checkcounter (C++ enumerator)

 	state_codes::sc_smpl_hdcread (C++ enumerator)

 	state_codes::sc_smpl_hdcreq (C++ enumerator)

 	state_codes::sc_smpl_hdcwait (C++ enumerator)

 	state_codes::sc_smpl_wait (C++ enumerator)

 	state_fcns (C++ member)

 	state_transitions (C++ member)

 	stopFlag (C++ member)

 	STR (C macro)

T

 	
 	t_uevent (C++ type)

 	t_uretcode (C++ type)

 	t_ustat (C++ type)

 	t_ustate (C++ type)

 	TEMPH_REGADDR (C macro)

 	TEMPL_REGADDR (C macro)

 	TEMPOFFSETADJ_REGADDR (C macro)

 	tevent (C++ type)

 	
 	TIMER1_B0_ISR (C++ function)

 	timerFlag (C++ member)

 	transition (C++ struct)

 	transition::dst_state (C++ member)

 	transition::ret_code (C++ member)

 	transition::src_state (C++ member)

 	tretcode (C++ type)

 	tstate (C++ type)

 	txDoneFlag (C++ member)

U

 	
 	UART_BAUDRATE (C macro)

 	uart_error (C++ function)

 	uart_event_codes (C++ enum)

 	uart_event_codes::evt_none (C++ enumerator)

 	uart_event_codes::evt_rxdone (C++ enumerator)

 	uart_event_codes::evt_txdone (C++ enumerator)

 	uart_init (C++ function)

 	uart_pcktrxed (C++ function)

 	uart_prepRx (C++ function)

 	uart_prepTx (C++ function)

 	uart_ret_codes (C++ enum)

 	uart_ret_codes::rc_fail (C++ enumerator)

 	uart_ret_codes::rc_ok (C++ enumerator)

 	uart_ret_codes::rc_wait (C++ enumerator)

 	uart_run (C++ function), [1]

 	uart_state_codes (C++ enum)

 	uart_state_codes::uartsc_error (C++ enumerator)

 	uart_state_codes::uartsc_init (C++ enumerator)

 	uart_state_codes::uartsc_pcktrxed (C++ enumerator)

 	uart_state_codes::uartsc_prepRx (C++ enumerator)

 	
 	uart_state_codes::uartsc_prepTx (C++ enumerator)

 	uart_state_codes::uartsc_txboot (C++ enumerator)

 	uart_state_codes::uartsc_waitforRx (C++ enumerator)

 	uart_state_codes::uartsc_waitforTx (C++ enumerator)

 	uart_txboot (C++ function)

 	uart_waitforRx (C++ function)

 	uart_waitforTx (C++ function)

 	uartBuffer (C++ member)

 	USCIB0_ISR (C++ function)

 	USEHMAC_PARAM_WRITTEN (C macro)

 	ustat (C++ enum)

 	ustat::ustat_finished (C++ enumerator)

 	ustat::ustat_running (C++ enumerator)

 	ustat::ustat_waiting (C++ enumerator)

 	ustate_fcns (C++ member)

 	ustate_transitions (C++ member)

 	utransition (C++ struct)

 	utransition::dst_state (C++ member)

 	utransition::ret_code (C++ member)

 	utransition::src_state (C++ member)

V

 	
 	VERSION (C macro)

W

 	
 	waitmemon (C++ function)

 	wdog_kick (C++ function)

 	
 	writetxt (C++ function)

 	WRONG_DEVADDR (C macro)

X

 	
 	XSTR (C macro)

Error Conditions

Before entering normal operation some checks are made. If any of these fail:

	An error message is written to the dynamic tag. This is either:

	An NDEF text record with a description of the error.

	The cuplCodec URL record without the circular buffer.

	cuplTag shuts down by entering LPM4 (deep sleep).

Battery life is conserved until the user attempts to read the tag and discovers the error.

Configuration Check Failed

After cuplTag has been erased and programmed anew, the variable in non-volatile memory allwritten
is 1. Each time a valid configuration string is received, its corresponding bit is set in the
RAM-based variable writtenfields.

For example:

	Bit 0 is set in response to serial string.

	Bit 1 is set in response to the secret key.

When all required bits have been set in writtenfields, its non-volatile counterpart allwritten
is cleared.

At startup nvparams_allwritten() returns 1 if allwritten is cleared.
This means that all configuration strings have been set in order for the cuplCodec Encoder to run.

The error cannot be communicated by writing a URL to the dynamic tag. The base URL field has
not been written and there is no guarantee a default URL will point to a web server.

A short NDEF text record is written instead: Config check failed. See cuplTag documentation.

Voltage Check Failed

cuplTag measures the voltage and will not continue if it is below a configurable threshold.

Repeated Resets caused by an Error

Flash memory on the dynamic tag must be protected from repeated writes. This may occur if a fault occurs repeatedly
that causes a reset. For example:

	A brownout reset occurs whilst the dynamic tag is been written.

	The tag resets and start to write to the dynamic tag again. The reset reoccurs.

If unchecked this cycle can go around many times each second. This will cause the dynamic tag to have worn out
before the fault can be addressed. The cuplTag employs a “last ditch” protection feature to avoid this.

Invalid State Transition

This error may be encountered by a programmer but should never be seen by an end-user!

A function should never request a state transition that is not defined in the state table.

If this does happen, a catch-all state is entered err_reqmemon().
The dynamic tag is powered up and an NDEF text record is written:
Invalid state transition.

cuplTag subsequently enters its end state and powers down to LPM4.

Getting Started

Prerequisites

	MSP-FET debugger (TI [https://www.ti.com/tool/MSP-FET]).

	GitHub Desktop (download [https://desktop.github.com/]) or your choice of Git software.

Fork and Clone cupl Tag

[image: ../../_images/fork-and-clone.png]
Visit the cupl Tag repository on (GitHub [https://github.com/cuplsensor/cupltag]). Click the
fork button in the top right.

Clone the forked repository to your computer by clicking the green Clone or Download button. See
https://guides.github.com/activities/forking/ for more details.

Open the Code Composer Project

	Download [https://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html] and install Code Composer Studio 10 (CCS).

	Open CCS. Launch the workspace of your choice.

	Click File -> Open Projects from File System…

	In Import Source, select the folder containing the clone of cupl Tag.

[image: ../../_images/ccsimport.png]

	Ensure that cupltag\firmware is checked. Every other folder should be unchecked.

	Click Finish.

	The project is now open.

[image: ../../_images/ccsopen.png]

Add Reference to cuplCodec

The cuplTag firmware depends on C files from cuplCodec.

	Fork the cuplCodec repository on (GitHub [https://github.com/cuplsensor/cuplcodec]).

	Clone this into a folder on your computer.

	In CCS, right click the cuplTag_firmware project.

	Select Properties from the context menu.

	In the Properties window, expand Resource on the left hand panel and select Linked Resources.

[image: ../../_images/ccslinkedresources.png]

	Double click the CUPLCODEC path variable. The Edit Variable window will appear.

[image: ../../_images/ccseditpathvar.png]

	Click the Folder… button. Select the Codec clone folder from step 2.

	Click Apply and Close.

	The cuplcodec_encoder project folder will now contain references to files inside cupl Codec.

[image: ../../_images/ccsreferenceadded.png]

Firmware

	State Chart
	Not Configured

	Programming Mode

	First Run

	Sampling Loop

	Reference
	Main

	HDC2021

	NT3H

	I2C

	Stat

	Config NFC

	Comms UART

	Non-Volatile Parameters

	Battery Voltage

Operating Modes

Primary

The software progresses into the loop at the bottom of the State Chart:

	Programming mode is not entered because the nPRG pin is deasserted.

	Tag configuration is present according to init_configcheck().

	No evidence of repeated resets has been found by init_errorcheck().

In normal operation the tag is updated periodically with calls to cuplCodec. To conserve power the
MSP430 Real Time Clock (RTC) is set to generate interrupts at one minute intervals. The RTC
is clocked by the 32.768 kHz watch crystal. A majority of time is spent
waiting in standby (LPM3) for the next RTC interrupt. The VMEM domain that includes the NT3H2211 NFC tag
and the HDC2021 is powered off during this time.
Therefore cuplTag draws little more than 1.43uA; equal to the MSP430 consumption in LPM3 (MSP430Datasheet [https://www.ti.com/document-viewer/MSP430FR2155/datasheet/operating-modes-slasec45810#SLASEC45810]).

Every Minute

	cuplTag wakes up from standby (LPM3).

	Minute counter is incremented.

	The VMEM domain is powered on.

	A call is made to confignfc_check(). This checks if an NDEF text record
(assumed to contain configuration data) is present on the tag. If so, a reset occurs.

	A call is made to enc_setelapsed() [https://cupl.readthedocs.io/projects/codec/en/latest/docs/reference/c_encoder/enc.html#_CPPv414enc_setelapsedj] in cuplCodec. The minuteselapsed field (CODEC_FEAT_26) of the cuplCodec URL
is updated.

	The VMEM domain is powered off.

	cuplTag returns to LPM3.

At the Sample Interval (in minutes)

	cuplTag wakes up from standby (LPM3).

	Minute counter is reset to 0.

	The VMEM domain is powered on.

	A call is made to confignfc_check(). This checks if an NDEF text record
(assumed to contain configuration data) is present on the tag. If so, a reset occurs.

	A sample is requested from the humidity sensor with hdc2010_startconv().

	The MSP430 waits in LPM3 until the DRDY line of this sensor is asserted.

	The sample is read from the humidity sensor with hdc2010_read_temp().

	A call is made to enc_pushsample() [https://cupl.readthedocs.io/projects/codec/en/latest/docs/reference/c_encoder/enc.html#_CPPv414enc_pushsampleii] in cuplCodec. The sample is written to the circular
buffer inside the cuplCodec URL. The minuteselapsed field is reset to 0.

	If the circular buffer has wrapped around to the start, then a call is made to nvparams_cresetsperloop().

	The VMEM domain is powered off.

	cuplTag returns to LPM3.

Configuration file check
Block 1 of the NT3H2211 is read via I2C. If it contains a text record, then it is assumed
that a configuration file has been written. cuplTag resets to read the configuration file.

Secondary

The secondary operating mode is programming mode. The state init_progmode() is entered when the nPRG pin
is low after reset. A reset is triggered at power on or by a low pulse on the nRESET pin (see HT04Pinout).
The only way to leave programming mode is to trigger a reset. This is done either via the aforementioned means
or by sending the soft-reset command.

The serial port is active in this state and not in any other to save power. Connect with these settings:

	Setting

	Value

	Baudrate

	9600

	Parity

	None

	Stop bit

	1

	Flow control

	Off

A simple command and response scheme is used. Basic commands have 3 characters:

	Character

	Description

	Note

	<

	Start character

	

	z

	Command ID

	Any character in the range a-z, A-Z and 0-9

	>

	End character

	

Configuration string commands add a parameter string:

	Character

	Description

	Note

	<

	Start character

	

	b

	Command ID

	Any character in [a-z, A-Z, 0-9]

	:

	Parameter prefix

	

	ABcd1234

	Parameter string

	Up to 64 characters in [a-z, A-Z, 0-9]

	>

	End character

	

Responses take a similar format to commands, starting with a ‘<’ character and ending with a ‘>’.

A human-readable ASCII format was chosen because very little data is transacted.
It is useful to be able to send and receive commands through the terminal window without having to encode
and decode packets.

Basic Commands

	Command

	Name

	Response

	Example

	Description

	<x>

	Version

	<HWVER_FWVER_CODECVER>

	<HT04_F2_C1>

	Hardware, firmware and codec versions

	<y>

	EnterBL

	None

	
	Enter the MSP430 UART bootloader

	<z>

	SoftReset

	None

	
	Reset the MSP430

Error Response

The cuplTag firmware responds with ‘<e>’ if it has failed to parse a command.

Configuration Commands

See configuration strings.

The State Chart shows a theoretical transition into an error state. This can only occur if the UART
state table is incomplete.

Startup

Programming

These instructions demonstrate how to program and debug the MSP430 on cuplTag.

Equipment

[image: Items needed to program the MSP430]

You will need:

	An MSP-FET with a USB cable.

	A PC running Code Composer Studio.

	4 coloured jumper wires.

	A 2x4 way 2.54mm pitch pin header.

	A 1x2 way 2.54mm pitch pin header.

	A 2 way jumper.

	Solder.

	A cuplTag PCBA (HT07), unscrewed from the enclosure, with no battery inserted.

Populate the Headers

[image: Soldering headers onto HT07]

First, solder the pin headers onto J30 and JP30 of HT07. Use the jumper to short JP30.

Make Connections

In the diagram below we will make connection J2 instead of J1, because the HT07 has no battery inserted.

[image: MSP-FET Spy-Bi-Wire Schematic]

Spy-Bi-Wire is used to progra . Connect it to the MSP-FET.

	Name

	Colour

	MSP-FET name

	MSP-FET pin

	HT07 J30 pin

	HT07 J30 name

	+3V3

	Red

	VCC_TOOL

	2

	7

	VDD

	GND

	Black

	GND

	9

	3

	GND

	SBWTDIO

	White

	TDO/TDI

	1

	6

	nRST

	SBWTCK

	Purple

	TCK

	7

	4

	TST

[image: Jumper wire connections on the MSP-FET]

Program in CCS

	Connect the MSP-FET to a PC with a USB cable.

	Open the Code Composer Studio cuplTag project created earlier <GettingStarted>.

	Click on the Debug button. Wait for programming to complete.

[image: Debug button in Code Composer Studio]

Test

Test the program has loaded correctly by scanning HT07 with your phone.

If JP30 is shorted, the MSP430 will boot into programming mode: The serial port is enabled and a status string is written to an NDEF text record on the tag.

[image: Programming mode NDEF text record.]

Configuration Strings

Base URL

	Command ID

	b

	Parameter Length

	up to 64

	Parameter value

	Any URL-safe string

Example 1: <b:localhost:5000>

Example 2: <b:latest.f.cupl.uk>

This URL will be opened by a phone that taps cuplTag. It should point to a web application [https://github.com/cuplsensor/cuplfrontend] that decodes the cupl URL parameters [https://cupl.readthedocs.io/projects/codec/en/latest/docs/specification/features.html#url-parameters].

The scheme (e.g. HTTPS) must not be included.

The domain (e.g. latest.f.cupl.uk) is required.

The port (e.g. 5000) is only required if it differs from 443 for HTTPS or 80 for HTTP.

Serial

	Command ID

	w

	Parameter Length

	8

	Parameter value

	Any URL-safe Base64

Example: <w:KEG2lARW>

Each cuplTag in a deployment must be uniquely identified by an 8 character serial string. This is written into a dedicated URL parameter [https://cupl.readthedocs.io/projects/codec/en/latest/docs/specification/features.html#CODEC_FEAT_38] on startup.

The serial string is normally generated by the web application, when a new tag is defined. It can later be used to view data captured
from a tag (e.g. https://latest.f.cupl.uk/tag/KEG2lARW).

HMAC Secret Key

	Command ID

	s

	Parameter Length

	16

	Parameter value

	Any URL-safe Base64

Example: <s:4EOBdBWTsjeFZTm3>

The secret key is used to generate a Hash-based Message Authentication Code [https://cupl.readthedocs.io/projects/codec/en/latest/docs/specification/features.html#CODEC_FEAT_24], which is updated whenever a new sample is added to the URL.

It must be randomly generated and unique to each cuplTag in a deployment. It is feasible for one tag (and the key therein) to be comprimised.

The secret key will normally be generated by the web application, when a new tag is defined. It is shared between the application and the tag only.

No data read from a tag will be stored by the web application without HMAC verification; the HMAC computed from the secret key must match that read from cuplTag.

Sample Interval in Minutes

	Command ID

	t

	Parameter Length

	5 (max)

	Parameter value

	Integer (16-bit)

Example: <t:20> for a 20 minute interval.

This sets the time interval between samples in minutes. The minimum interval supported by the web application is 3 minutes. The maximum is 65535 minutes (6 weeks).

The time interval is base64 encoded and written into a URL parameter on startup. The web application uses this to timestamp all samples stored on the tag.

Disable HTTPS

	Command ID

	h

	Parameter Length

	1

	Parameter value

	0 (HTTPS), 1 (HTTP)

Example: <h:1> to use HTTP (insecure) instead of HTTPS.

Disables HTTPS in the web application URL. This can be helpful during development, because there is no need to obtain an SSL certificate. Not encouraged for production.

HTTPS and HTTP are the only 2 schemes supported by cuplTag for now.

Use HMAC

	Command ID

	i

	Parameter Length

	1

	Parameter value

	0 (HMAC disabled), 1 (HMAC enabled)

Example <i:1> to use HMAC-MD5.

When HMAC is disabled, an MD5 checksum is calculated in its place. This means that the secret key is ignored and a decode will be successful providing that the checksums match.

The feature was used during development, but it is not advised for production. MD5 may suffice for stateless web applications that do not store data from the tag. Standalone MD5 is deprecated as a checksum algorithm.

Minimum Battery Voltage (mV)

	Command ID

	u

	Parameter Length

	4

	Parameter value

	Integer (16-bit)

Example: <u:2200>

Sets the voltage below which the cuplTag does not operate.

Sample Format

	Command ID

	f

	Parameter Length

	1

	Parameter value

	1 (Temperature + RH), 2 (Temperature only)

Example 1: <f:1> for each sample to contain a temperature and relative humidity reading.

Example 2: <f:2> for each sample to contain a temperature reading only. This doubles the sample capacity.

 _images/plantuml-1b90ea5f03d91b7f4bd022fd0751e5cb24c47b3e.png
tr_hdereq

smpl_hdcreq

tr_ok

smpl_hdewait [tr_wait

tr_ok

smpl_hdcread

init_rtc_1min

smpl_checkcounter

init_wakeupcheck

fr_samplingloop

tr_ok

ftr_updatemin

tr_deepsleep

init_errorcheck

tr_ok

init_reqmemon

tr_ok

O vt

tr_ok

tr_newconfig

tr_ok

tr_ok

init_configcheck

fr_deepsleep

fr_deepsleep

err_msg

fr_deepsleep

_images/plantuml-38748f0a288a7fce61ddec4ac0f727477198816d.png
==

tr_newconfig

_wait

L vt

r_deepsleep

_updatemin

ir_deepsleep

r_deepsleep

_images/fork-and-clone.png
Them

ﬁ O

(=

origin

—
—

"fork and clone”

_images/headerassembly.jpg

_images/plantuml-e5c6b43ef2a557d645b18e7b5c349940db0ffdcc.png
tr_ok

tr_ok

tr_ok

tr_ok

fr_samplingloop

ir_deepsleep

_images/progmode.jpg
1316 @ 0 & »

New tag collected

Programming Mode. Connect to serial
port at 9600 baud.

_images/plantuml-66bb6548b086240834a0919691b6d06b0d7e3503.png
tr_ok

tr_ok

tr_ok

ltr_prog

= o vt

_images/plantuml-a858580074f10e06e095f0d92d7e8fb5c3fdb196.png
tr_ok

tr_ok

tr_ok

tr_newconfig

init_wakeupcheck

_images/whatyouwillneed.jpg
12790 TYLOLN 9VI ®1dND

«"2.£) Va5 105

YL

i 23
0 oS
g
&3

ity ©
|0k
1= 9
L0 €3 %N WIW

S v2 or later

ONL-

CUp|®o NFC SENSOR

oy

https://github.com/cuplsensor/cupitag

https://cupl.co.uk
© 2020 Plotsensor Ltd.
Licenced under CERN

SVXAL,

1004 UOIBINW3 Yse|d L3 dSI
 LNHWNYLSN]

3
@
©
©
o
n
w

_plantuml/1b/1b90ea5f03d91b7f4bd022fd0751e5cb24c47b3e.png
tr_hdereq

smpl_hdcreq

tr_ok

smpl_hdewait [tr_wait

tr_ok

smpl_hdcread

init_rtc_1min

smpl_checkcounter

init_wakeupcheck

fr_samplingloop

tr_ok

ftr_updatemin

tr_deepsleep

init_errorcheck

tr_ok

init_reqmemon

tr_ok

O vt

tr_ok

tr_newconfig

tr_ok

tr_ok

init_configcheck

fr_deepsleep

fr_deepsleep

err_msg

fr_deepsleep

_images/clickdebug.jpg
i workspace v10 - Source not found. - Code Composer Studio

Fle Edt View Novgate Project Run Scripts Window Help

D-ERIEHIR RS- BEEC D

& Projct s 5| BT PT orars Glesty wing f— p

W o s 7 .
VA Sinares

> G driverlib Configure when this editor is st

5 Gy targetConfige
> [batvc

> [f comms_uartc
> [comms_uarth
> [f confignfc.c

> B confignfch

>

_images/fetconnections.jpg

_images/ccsopen.png
8 workspace.v10 - cuplTeg_firmwere/main.c - Code Composer Studio
Fle Edt View Novigate Project Run Scrpls Window Help

iu..u_ Available

H-HRIBI%-B-iR RIS HEICC D
[Project Explorer 23 &Y & = O @GettingStarted [mainc 12 =g
5 clpiTag rmware [cupltsg master] 115 o
T nciudes 116 #define LED_PORT GPIO_PORT_P3
127 #define LEDPIN GPIO_PINZ
> G comms ¥ X X
> G Debug 115 #define CS_XT1_CRYSTAL_FREQUENCY 32765
> G diverlib 120 #define CSXTI_TIMEOUT 65000
> @ Release2 121
G torgetConfigs 122 #define CP1OMS 41 // Counts per 10 millisecond at ACLK = 32765 kiz and 5 divider.
> (@ urlencoder 123
124 #define EXIT_STATE sc_error
> [} confignfe.c 125 #define ENTRY_STATE sc_init
> [® confignfch 126
> [@ hde20io.e 127volatile int recFlag = 05
* [hdcoioh 125 volatile int fdrlag
VB pee 129 volatile int tinerFlag
130volatile int hdclag = 05
> [2ch ot
> (4 Ink_msp430f2033.cmd. 132 int minutessincescan = 0
> [@ mainc 133
3 state 134 typedef enum state_codes {
B wtn 15 scinit,
’ ; 136 sc_init_regsyson,
Doxyfile 137 sinit_waitsyson,
Bf a2t 136 scinit_ntogandfd,
2 Ik mspa30r5969.cmd 13 scinit_nfecheck,
% In mspd20fr5594 cmd 140 scinit_serialcheck,
161 scinit_errorcheck,
162 scinitrec,
143 sc_smpl_chechcounter,
145 s smpl_hdereq,
145 scsmpl_hdenait, v
[£2 Problems 53 ¥ §=n8
Oitems
Descrption Resource Path Location Type

_images/ccsreferenceadded.png
& workspace_v10 - cuplTag_firmware/main.c - Code Composer Studio - o X
File Edt View Navigate Project Run Scripts Window Help
H-HRIBI%-B-iR-RiF-BHEICC D

[Project Explorer 23 &Y & = O @GettingStarted [mainc 12 =g
V4% > cuplTag_firmware [Active - Debug] [cupltag master] " 1/* --COPYRIGHT--,BSD s
S) ncludes 2’ Copyright (c) 2016, Texas Instruments Incorporated
3 * ALl rights reserved.
> G comms 3:
~ (cupleodec_encoder 5 * Redistribution and use in source and binary forms, with o without
> [8 basebdc 6 * modification, are permitted provided that the following conditions
> [@ basesth 7 * are met:
> [8 batve s
> B v 5 ** Redistributions of source code must retain the above copyright
8 10 * notice, this list of conditions and the following disclaimer.
> [defsh .
> [@ demic 12 * * Redistributions in binary form must reproduce the above copyright
> [demin 13 * notice, this list of conditions and the following disclaimer in the
3 [eepc 1a * documentation and/or other materials provided with the distribution.
15 -
> B esph 16 * * Neither the name of Texas Instruments Incorporated nor the names of
> [8 mds.c 17 * its contributors may be used to endorse or promote products derived
> [mdsh 18 = from this software without specific prior written permission.
> [@ ndefic 1o+
© B ndefh 20 * THIS SOFTARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I
VB e 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED T0,
22 * THE INPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
> [B nt3hh 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
> 18 mtypec 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
> [nypeh 25 * EXEWPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
o 3 paihiste 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
i 27 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
pairhist 28 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
> [6) samplec 29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
> [sampleh 30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> [stat bitsh 31 * —/COPYRIGHT--=/ v
Doxyfile
> @ Debug = =
LG s (81 Problems 53 ¥ §=n8
o Relesser Oerrors, 3 wamings, O others
G targetConfigs Descrption Resource Path Location Type
> [@ confignfe.c > & Warmings (3 tems)
> [® confignfch
> [@ hde20io.e
> [® hdc2010n
> [2ee
> [2ch
> (4 Ink_msp430f2033.cmd.
> [@ mainc .
= Updates Available x ;o

G /cuplTag firmware/cuplcodec_encoder

_images/fetschematic.png
A MSP430FRxxx
4 pvce
[0 J2(seeNoter) !
| 1
S ' R1
47k
(see Note B)
JTAG
veetooL |, 4 | Toormol Ps RSTINMUSBWTDIO
VCC TARGET
4 3
6 5
N , |ck
o0 o [ono
K—{12 1 —x
X—u ulx
TEST/SBWTCK
et |
1nF bvss
(see Note B)

Copyright © 2016, Texas Instruments Incorporated

_plantuml/38/38748f0a288a7fce61ddec4ac0f727477198816d.png
==

tr_newconfig

_wait

L vt

r_deepsleep

_updatemin

ir_deepsleep

r_deepsleep

nav.xhtml

 Table of Contents

 		
 cupl Tag Documention

 		
 State Chart

 		
 Not Configured

 		
 Programming Mode

 		
 First Run

 		
 Sampling Loop

 		
 Reference

 		
 Main

 		
 HDC2021

 		
 NT3H

 		
 I2C

 		
 Stat

 		
 Config NFC

 		
 Comms UART

 		
 Non-Volatile Parameters

 		
 Battery Voltage

_images/ccsimport.png
9 Import Projectsfrom File System or Archive

Import Projects from File System or Archive

R >

mpotsourc: [CAUsemvmaeo DocumensPasersoncuptag

Bl = | o

[pefitertec

] Select All

Folder

0 cupltag
e s

[Close newly imported projects upon completion
Use instaled project confguratorstos

Search for nested projects

Detect snd configure projct natures

Working sets
[1Add project to working sets

Warking sets

Import a5 Deselect All

Ecipse project
Tof 2selected
[bide sresdy open projects

New.

Select.

Show other specialized import wizards

P S]

_plantuml/e5/e5c6b43ef2a557d645b18e7b5c349940db0ffdcc.png
tr_ok

tr_ok

tr_ok

tr_ok

fr_samplingloop

ir_deepsleep

_images/ccslinkedresources.png
& Properties for cuplTag firmware

type filtertext

Linked Resources

 Resource
TS Path Variables Linked Resources
Resource Filters Path veriables specify locations in the fle system, including other path variables with the syntax *S{VAR}"
General The locations of linked resources may be specified elative to these path variables.
v Build Defined path variables for resource cuplTag_firmware'
> MSPa30 Compiler Nome olue T
> MSPAZ0 Linker
. MSPA30 He Utity £ CCs BASE ROOT CAti\cesT000\ces\ccs_base T
Debug E5CCSINSTALLROOT Cati\ces1000\ces
Git £€6_T00L ROOT Citi\cesT000\ccstools\compiler\ti-cgt-mspd30_20.2.. Remove
Project Natures £ CUPLCODEC
G ECLIPSE HOME Citi\cesT000\ccs\eclipsel
G PARENT LOC CAUsers\malco\workspace v10
EPROJECTLOC C\Users\malco\Documents\Plotsensor cupltagfirm.
€TPRODUCTS DIR et
€ TPRODUCTS DIR_TIREX CAti
5 WORKSPACE_LOC CAUsers\malco\workspace v10
@ showsdvanced settings Apply and Close| Cancel

_plantuml/66/66bb6548b086240834a0919691b6d06b0d7e3503.png
tr_ok

tr_ok

tr_ok

ltr_prog

= o vt

_images/ccseditpathvar.png
) Edit Veriable

Edit an Existing Path Variable
© Vou must provide a fil or folder path ss varable value.

Name: [cuptconec
N e [i
R

@ ok Conce

_plantuml/a8/a858580074f10e06e095f0d92d7e8fb5c3fdb196.png
tr_ok

tr_ok

tr_ok

tr_newconfig

init_wakeupcheck

_static/file.png

_static/minus.png

_static/cupl_textonly_white_small.png

_static/plus.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_asc_disabled.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_both.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_asc.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_desc.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_desc_disabled.png

