

cupl Codec Documentation

Specification

	Requirements
	Encoder

	Decoder

	Specifications

	Features
	NDEF message

	Other

	Low resource utilisation

	Implementation

Reference

	Decoder
	Decode a cuplcodec URL

	Sample

	Pair

	Status

	C Encoder

	Python Wrapped Encoder (PyEncoder)

Indices and tables

	Index

	Module Index

	Search Page

Requirements

[image: @startuml ' Nodes definition node "<size:12>Feature</size>\n**NDEF message**\n**type**\n<size:10>CODEC_FEAT_1</size>" as CODEC_FEAT_1 [[../docs/specification/features.xhtml#CODEC_FEAT_1]] #DF744A node "<size:12>Feature</size>\n**NDEF message**\n**length**\n<size:10>CODEC_FEAT_2</size>" as CODEC_FEAT_2 [[../docs/specification/features.xhtml#CODEC_FEAT_2]] #DF744A node "<size:12>Feature</size>\n**Payload length**\n<size:10>CODEC_FEAT_3</size>" as CODEC_FEAT_3 [[../docs/specification/features.xhtml#CODEC_FEAT_3]] #DF744A node "<size:12>Feature</size>\n**Type length**\n<size:10>CODEC_FEAT_4</size>" as CODEC_FEAT_4 [[../docs/specification/features.xhtml#CODEC_FEAT_4]] #DF744A node "<size:12>Feature</size>\n**Record type**\n<size:10>CODEC_FEAT_5</size>" as CODEC_FEAT_5 [[../docs/specification/features.xhtml#CODEC_FEAT_5]] #DF744A node "<size:12>Feature</size>\n**Sample interval**\n**b64**\n<size:10>CODEC_FEAT_10</size>" as CODEC_FEAT_10 [[../docs/specification/features.xhtml#CODEC_FEAT_10]] #DF744A node "<size:12>Feature</size>\n**Serial**\n<size:10>CODEC_FEAT_38</size>" as CODEC_FEAT_38 [[../docs/specification/features.xhtml#CODEC_FEAT_38]] #DF744A node "<size:12>Feature</size>\n**CodecVersion**\n<size:10>CODEC_FEAT_41</size>" as CODEC_FEAT_41 [[../docs/specification/features.xhtml#CODEC_FEAT_41]] #DF744A node "<size:12>Feature</size>\n**FormatCode**\n<size:10>CODEC_FEAT_42</size>" as CODEC_FEAT_42 [[../docs/specification/features.xhtml#CODEC_FEAT_42]] #DF744A node "<size:12>Feature</size>\n**Error raised if**\n**versions**\n**mismatch**\n<size:10>CODEC_FEAT_43</size>" as CODEC_FEAT_43 [[../docs/specification/features.xhtml#CODEC_FEAT_43]] #DF744A node "<size:12>Feature</size>\n**Protocol**\n<size:10>CODEC_FEAT_44</size>" as CODEC_FEAT_44 [[../docs/specification/features.xhtml#CODEC_FEAT_44]] #DF744A node "<size:12>Feature</size>\n**LoopCount**\n<size:10>CODEC_FEAT_28</size>" as CODEC_FEAT_28 [[../docs/specification/features.xhtml#CODEC_FEAT_28]] #DF744A node "<size:12>Feature</size>\n**ResetsAllTime**\n<size:10>CODEC_FEAT_29</size>" as CODEC_FEAT_29 [[../docs/specification/features.xhtml#CODEC_FEAT_29]] #DF744A node "<size:12>Feature</size>\n**BatV**\n<size:10>CODEC_FEAT_30</size>" as CODEC_FEAT_30 [[../docs/specification/features.xhtml#CODEC_FEAT_30]] #DF744A node "<size:12>Feature</size>\n**Error raised if**\n**hash check**\n**fails**\n<size:10>CODEC_FEAT_40</size>" as CODEC_FEAT_40 [[../docs/specification/features.xhtml#CODEC_FEAT_40]] #DF744A node "<size:12>Feature</size>\n**Adjustable**\n**buffer length.**\n<size:10>CODEC_FEAT_23</size>" as CODEC_FEAT_23 [[../docs/specification/features.xhtml#CODEC_FEAT_23]] #DF744A node "<size:12>Feature</size>\n**Hash**\n<size:10>CODEC_FEAT_24</size>" as CODEC_FEAT_24 [[../docs/specification/features.xhtml#CODEC_FEAT_24]] #DF744A node "<size:12>Feature</size>\n**NPairs**\n<size:10>CODEC_FEAT_25</size>" as CODEC_FEAT_25 [[../docs/specification/features.xhtml#CODEC_FEAT_25]] #DF744A node "<size:12>Feature</size>\n**Elapsed b64**\n<size:10>CODEC_FEAT_26</size>" as CODEC_FEAT_26 [[../docs/specification/features.xhtml#CODEC_FEAT_26]] #DF744A node "<size:12>Feature</size>\n**No absolute**\n**timestamp**\n<size:10>CODEC_FEAT_27</size>" as CODEC_FEAT_27 [[../docs/specification/features.xhtml#CODEC_FEAT_27]] #DF744A node "<size:12>Feature</size>\n**Samples**\n**timestamped by**\n**decoder**\n<size:10>CODEC_FEAT_6</size>" as CODEC_FEAT_6 [[../docs/specification/features.xhtml#CODEC_FEAT_6]] #DF744A node "<size:12>Feature</size>\n**Base URL**\n<size:10>CODEC_FEAT_7</size>" as CODEC_FEAT_7 [[../docs/specification/features.xhtml#CODEC_FEAT_7]] #DF744A node "<size:12>Feature</size>\n**Encoder writes**\n**to EEPROM**\n**blocks.**\n<size:10>CODEC_FEAT_13</size>" as CODEC_FEAT_13 [[../docs/specification/features.xhtml#CODEC_FEAT_13]] #DF744A node "<size:12>Feature</size>\n**Only static**\n**memory**\n**allocation is**\n**used.**\n<size:10>CODEC_FEAT_8</size>" as CODEC_FEAT_8 [[../docs/specification/features.xhtml#CODEC_FEAT_8]] #DF744A node "<size:12>Feature</size>\n**Encoder is**\n**written in C.**\n<size:10>CODEC_FEAT_9</size>" as CODEC_FEAT_9 [[../docs/specification/features.xhtml#CODEC_FEAT_9]] #DF744A node "<size:12>Feature</size>\n**No RTOS is**\n**required**\n<size:10>CODEC_FEAT_14</size>" as CODEC_FEAT_14 [[../docs/specification/features.xhtml#CODEC_FEAT_14]] #DF744A node "<size:12>Feature</size>\n**Status updates**\n**once per loop**\n<size:10>CODEC_FEAT_39</size>" as CODEC_FEAT_39 [[../docs/specification/features.xhtml#CODEC_FEAT_39]] #DF744A node "<size:12>Feature</size>\n**Full message**\n**written on**\n**startup.**\n<size:10>CODEC_FEAT_12</size>" as CODEC_FEAT_12 [[../docs/specification/features.xhtml#CODEC_FEAT_12]] #DF744A node "<size:12>Feature</size>\n**Append sample.**\n<size:10>CODEC_FEAT_15</size>" as CODEC_FEAT_15 [[../docs/specification/features.xhtml#CODEC_FEAT_15]] #DF744A node "<size:12>Feature</size>\n**The encoder**\n**writes two**\n**circular buffer**\n**blocks at a**\n**time.**\n<size:10>CODEC_FEAT_16</size>" as CODEC_FEAT_16 [[../docs/specification/features.xhtml#CODEC_FEAT_16]] #DF744A node "<size:12>Requirement</size>\n**Codec comprises**\n**an encoder and**\n**decoder.**\n<size:10>CODEC_REQ_3</size>" as CODEC_REQ_3 [[../docs/specification/requirements.xhtml#CODEC_REQ_3]] #BFD8D2 node "<size:12>Requirement</size>\n**Encoder writes**\n**a message**\n<size:10>CODEC_REQ_1</size>" as CODEC_REQ_1 [[../docs/specification/requirements.xhtml#CODEC_REQ_1]] #BFD8D2 node "<size:12>Requirement</size>\n**Encoder shall**\n**run on a low**\n**cost, low power**\n**microcontroller**\n<size:10>CODEC_REQ_12</size>" as CODEC_REQ_12 [[../docs/specification/requirements.xhtml#CODEC_REQ_12]] #BFD8D2 node "<size:12>Requirement</size>\n**No**\n**configuration**\n**from the user**\n<size:10>CODEC_REQ_7</size>" as CODEC_REQ_7 [[../docs/specification/requirements.xhtml#CODEC_REQ_7]] #BFD8D2 node "<size:12>Requirement</size>\n**Message is**\n**written to**\n**EEPROM**\n<size:10>CODEC_REQ_8</size>" as CODEC_REQ_8 [[../docs/specification/requirements.xhtml#CODEC_REQ_8]] #BFD8D2 node "<size:12>Requirement</size>\n**Decoder**\n**reproduces**\n**encoder data**\n<size:10>CODEC_REQ_2</size>" as CODEC_REQ_2 [[../docs/specification/requirements.xhtml#CODEC_REQ_2]] #BFD8D2 node "<size:12>Specification</size>\n**Message format**\n<size:10>CODEC_SPEC_1</size>" as CODEC_SPEC_1 [[../docs/specification/specs.xhtml#CODEC_SPEC_1]] #FEDCD2 node "<size:12>Specification</size>\n**NDEF URL record**\n<size:10>CODEC_SPEC_3</size>" as CODEC_SPEC_3 [[../docs/specification/specs.xhtml#CODEC_SPEC_3]] #FEDCD2 node "<size:12>Specification</size>\n**Circular Buffer**\n<size:10>CODEC_SPEC_12</size>" as CODEC_SPEC_12 [[../docs/specification/specs.xhtml#CODEC_SPEC_12]] #FEDCD2 node "<size:12>Specification</size>\n**Endstop**\n<size:10>CODEC_SPEC_13</size>" as CODEC_SPEC_13 [[../docs/specification/specs.xhtml#CODEC_SPEC_13]] #FEDCD2 node "<size:12>Specification</size>\n**VFmt b64**\n<size:10>CODEC_SPEC_18</size>" as CODEC_SPEC_18 [[../docs/specification/specs.xhtml#CODEC_SPEC_18]] #FEDCD2 node "<size:12>Specification</size>\n**HashN b64**\n<size:10>CODEC_SPEC_14</size>" as CODEC_SPEC_14 [[../docs/specification/specs.xhtml#CODEC_SPEC_14]] #FEDCD2 node "<size:12>Specification</size>\n**Status b64**\n<size:10>CODEC_SPEC_15</size>" as CODEC_SPEC_15 [[../docs/specification/specs.xhtml#CODEC_SPEC_15]] #FEDCD2 node "<size:12>Specification</size>\n**ResetCause**\n<size:10>CODEC_SPEC_16</size>" as CODEC_SPEC_16 [[../docs/specification/specs.xhtml#CODEC_SPEC_16]] #FEDCD2 node "<size:12>Specification</size>\n**TNF + flags**\n<size:10>CODEC_SPEC_5</size>" as CODEC_SPEC_5 [[../docs/specification/specs.xhtml#CODEC_SPEC_5]] #FEDCD2 node "<size:12>Specification</size>\n**Low memory**\n**utilisation**\n<size:10>CODEC_SPEC_4</size>" as CODEC_SPEC_4 [[../docs/specification/specs.xhtml#CODEC_SPEC_4]] #FEDCD2 node "<size:12>Specification</size>\n**Reduce EEPROM**\n**wear**\n<size:10>CODEC_SPEC_2</size>" as CODEC_SPEC_2 [[../docs/specification/specs.xhtml#CODEC_SPEC_2]] #FEDCD2 node "<size:12>Specification</size>\n**Low power**\n**consumption**\n<size:10>CODEC_SPEC_8</size>" as CODEC_SPEC_8 [[../docs/specification/specs.xhtml#CODEC_SPEC_8]] #FEDCD2 node "<size:12>Specification</size>\n**Zero user**\n**configuration**\n<size:10>CODEC_SPEC_6</size>" as CODEC_SPEC_6 [[../docs/specification/specs.xhtml#CODEC_SPEC_6]] #FEDCD2 node "<size:12>Specification</size>\n**URL parameters**\n**decoded**\n<size:10>CODEC_SPEC_19</size>" as CODEC_SPEC_19 [[../docs/specification/specs.xhtml#CODEC_SPEC_19]] #FEDCD2 node "<size:12>Specification</size>\n**Circular buffer**\n**decoded**\n<size:10>CODEC_SPEC_10</size>" as CODEC_SPEC_10 [[../docs/specification/specs.xhtml#CODEC_SPEC_10]] #FEDCD2 ' Connection definition CODEC_FEAT_1 --> CODEC_SPEC_1 CODEC_FEAT_2 --> CODEC_SPEC_1 CODEC_FEAT_3 --> CODEC_SPEC_3 CODEC_FEAT_4 --> CODEC_SPEC_3 CODEC_FEAT_5 --> CODEC_SPEC_3 CODEC_FEAT_10 --> CODEC_SPEC_3 CODEC_FEAT_38 --> CODEC_SPEC_3 CODEC_FEAT_41 --> CODEC_SPEC_18 CODEC_FEAT_41 --> CODEC_FEAT_43 CODEC_FEAT_42 --> CODEC_SPEC_18 CODEC_FEAT_43 --> CODEC_SPEC_19 CODEC_FEAT_44 --> CODEC_SPEC_3 CODEC_FEAT_28 --> CODEC_SPEC_15 CODEC_FEAT_29 --> CODEC_SPEC_15 CODEC_FEAT_30 --> CODEC_SPEC_15 CODEC_FEAT_40 --> CODEC_SPEC_10 CODEC_FEAT_23 --> CODEC_SPEC_12 CODEC_FEAT_24 --> CODEC_SPEC_14 CODEC_FEAT_25 --> CODEC_SPEC_14 CODEC_FEAT_26 --> CODEC_SPEC_13 CODEC_FEAT_27 --> CODEC_SPEC_6 CODEC_FEAT_27 --> CODEC_SPEC_10 CODEC_FEAT_6 --> CODEC_SPEC_10 CODEC_FEAT_7 --> CODEC_SPEC_3 CODEC_FEAT_13 --> CODEC_SPEC_4 CODEC_FEAT_8 --> CODEC_SPEC_4 CODEC_FEAT_9 --> CODEC_SPEC_4 CODEC_FEAT_14 --> CODEC_SPEC_8 CODEC_FEAT_14 --> CODEC_SPEC_4 CODEC_FEAT_39 --> CODEC_SPEC_15 CODEC_FEAT_12 --> CODEC_SPEC_1 CODEC_FEAT_15 --> CODEC_SPEC_12 CODEC_FEAT_16 --> CODEC_SPEC_4 CODEC_FEAT_16 --> CODEC_SPEC_2 CODEC_FEAT_16 --> CODEC_SPEC_8 CODEC_REQ_1 --> CODEC_REQ_3 CODEC_REQ_8 --> CODEC_REQ_1 CODEC_REQ_2 --> CODEC_REQ_3 CODEC_SPEC_1 --> CODEC_REQ_1 CODEC_SPEC_3 --> CODEC_SPEC_1 CODEC_SPEC_12 --> CODEC_SPEC_3 CODEC_SPEC_12 --> CODEC_SPEC_2 CODEC_SPEC_13 --> CODEC_SPEC_12 CODEC_SPEC_18 --> CODEC_SPEC_3 CODEC_SPEC_14 --> CODEC_SPEC_13 CODEC_SPEC_15 --> CODEC_SPEC_3 CODEC_SPEC_16 --> CODEC_SPEC_15 CODEC_SPEC_5 --> CODEC_SPEC_3 CODEC_SPEC_4 --> CODEC_REQ_12 CODEC_SPEC_2 --> CODEC_REQ_8 CODEC_SPEC_8 --> CODEC_REQ_12 CODEC_SPEC_6 --> CODEC_REQ_7 CODEC_SPEC_19 --> CODEC_REQ_2 CODEC_SPEC_10 --> CODEC_SPEC_19 @enduml]

My first needflow

	
Requirement: Codec comprises an encoder and decoder. CODEC_REQ_3 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links incoming: CODEC_REQ_1, CODEC_REQ_2

	The codec comprises has two parts:

	An encoder that produces an URL from raw data.

	A decoder that recovers raw data from the URL.

Encoder

	
Requirement: Encoder writes a message CODEC_REQ_1 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_REQ_3

links incoming: CODEC_REQ_8, CODEC_SPEC_1

	The encoder takes environmental sensor data and writes it into a message
that is opened and read automatically by most mobile phones.

	
Requirement: Encoder shall run on a low cost, low power microcontroller CODEC_REQ_12 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links incoming: CODEC_SPEC_4, CODEC_SPEC_8

	The encoder will run on an inexpensive microcontroller. This will be powered
by a coin cell battery and should run for years.

	
Requirement: No configuration from the user CODEC_REQ_7 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links incoming: CODEC_SPEC_6

	The encoder must not require any set up or configuration from the user.

	
Requirement: Message is written to EEPROM CODEC_REQ_8 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_REQ_1

links incoming: CODEC_SPEC_2

	The encoder must not write to the same EEPROM block too frequently. Each has a write endurance of
roughly 100,000 cycles.

Status information changes infrequently compared to environmental sensor data.

Decoder

	
Requirement: Decoder reproduces encoder data CODEC_REQ_2 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_REQ_3

links incoming: CODEC_SPEC_19

	The decoder must reproduce data fed into the encoder.

Specifications

	
Specification: Message format CODEC_SPEC_1 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_REQ_1

links incoming: CODEC_FEAT_1, CODEC_FEAT_2, CODEC_FEAT_12, CODEC_SPEC_3

	The message format is NDEF. This is used to transmit data to a phone using NFC.
An NDEF message has 3 fields: Type, Length and Value.

	NDEF Msg.

	NDEF message type (CODEC_FEAT_1)

	NDEF message length (CODEC_FEAT_2)

	Value

	Byte

	0

	1

	2

	3

	4…

	Data

	0x03

	0xFF

	MSB

	LSB

	NDEF URL record (CODEC_SPEC_3)

	
Specification: NDEF URL record CODEC_SPEC_3 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_1

links incoming: CODEC_FEAT_3, CODEC_FEAT_4, CODEC_FEAT_5, CODEC_FEAT_10, CODEC_FEAT_38, CODEC_FEAT_44, CODEC_FEAT_7, CODEC_SPEC_12, CODEC_SPEC_18, CODEC_SPEC_15, CODEC_SPEC_5

	Sensor data are stored in a URL record. As it is the only one in the message and of a known type,
a phone opens the URL automatically in its default web browser.

NDEF record header

	Desc

	TNF + flags (CODEC_SPEC_5)

	Type length (CODEC_FEAT_4)

	Payload length (CODEC_FEAT_3)

	Record type (CODEC_FEAT_5)

	Byte

	0

	1

	2

	3

	4

	5

	6

	Data

	0xC3

	0x01

	PL[3]

	PL[2]

	PL[1]

	PL[0]

	0x55

NDEF record payload start

	Desc.

	Protocol (CODEC_FEAT_44)

	Base URL (CODEC_FEAT_7)

	Sample interval b64 (CODEC_FEAT_10)

	Serial (CODEC_FEAT_38)

	Data

	0x03

	t.plotsensor.com

	/?t=AWg*

	&s=YWJjZGVm

NDEF record payload continued

	Desc.

	VFmt b64 (CODEC_SPEC_18)

	Status b64 (CODEC_SPEC_15)

	CircBufferStart

	Circular Buffer (CODEC_SPEC_12)

	Data

	&v=AAAA

	&x=AAABALEK

	&q=

	MDaWMDaW…

	
Specification: Circular Buffer CODEC_SPEC_12 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3, CODEC_SPEC_2

links incoming: CODEC_FEAT_23, CODEC_FEAT_15, CODEC_SPEC_13

	The circular buffer starts on a block boundary and occupies an integer number of 16-byte blocks.
1K of EEPROM is enough for 32 blocks.

Only two blocks are edited in RAM at a time:

	Cursor Block

	Next Block

	Cursor Demi

	Endstop Demis (0,1)

	Oldest Demi

	P641

	P640

	
	P64N

	P64N-1

	R643

	R642

	R641

	R640

	
	R64L

	R64L-1

	R64L-2

	R64L-3

Blocks are subdivided into two 8-byte demis. Each demi holds 2 base64 encoded pairs.

Each pair consists of 2 base64 encoded sensor readings. By default these will be captured
simultaneously by a temperature sensor and a humidity sensor.

New sensor readings are written to Cursor Demi. Each time this occurs, the subsequent
Endstop (CODEC_SPEC_13) is updated.

When Cursor Demi is full, both it and the endstop are moved forward when the next sensor reading is added:

	Cursor Block

	Next Block

	Demi

	Cursor Demi

	Endstop Demis (0,1)

	S2

	S1

	S0

	Spad

	

	R5

	R4

	R3

	R2

	R1

	R0

	

The previous oldest demi is overwritten. Note there can be a gap between the most recent sample and
the start of the endstop demis. This is zero padded. The padding will not be decoded because the number
of valid samples in the buffer is included in the endstop.

	
Specification: Endstop CODEC_SPEC_13 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_12

links incoming: CODEC_FEAT_26, CODEC_SPEC_14

	The endstop occupies 2 demis (16 bytes) after the cursor demi. It is terminated with a unique character. This marks
the end of the circular buffer; the divide between new and old data. The decoder finds this in order to unwrap the circular buffer into a list of samples,
ordered newest to oldest.

The endstop contains data about the current state of the circular buffer, for example the number of
valid samples it contains. These data are appended to the circular buffer to meet
Reduce EEPROM wear (CODEC_SPEC_2).

	
Specification: VFmt b64 CODEC_SPEC_18 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_SPEC_3

links incoming: CODEC_FEAT_41, CODEC_FEAT_42

	This is a 3 byte structure that expands to 4 bytes after base64 encoding.

The unencoded structure is:

	Byte

	0

	1

	2

	Description

	CodecVersion (CODEC_FEAT_41)

	FormatCode (CODEC_FEAT_42)

	
Specification: HashN b64 CODEC_SPEC_14 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_13

links incoming: CODEC_FEAT_24, CODEC_FEAT_25

	This is a 9 byte structure that expands to 12 bytes after base64 encoding.

The unencoded structure is:

	Byte

	0

	1

	2

	3

	4

	5

	6

	7

	8

	Description

	Hash (CODEC_FEAT_24)

	NPairs (CODEC_FEAT_25)

	
Specification: Status b64 CODEC_SPEC_15 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

links incoming: CODEC_FEAT_28, CODEC_FEAT_29, CODEC_FEAT_30, CODEC_FEAT_39, CODEC_SPEC_16

	This is a 6 byte structure that expands to 8 bytes after base64 encoding.

It corresponds to status. Status information is used by the decoder
to determine if the encoder and its microcontroller host are running ok.

The unencoded structure is:

	Byte

	0

	1

	2

	3

	4

	5

	Description

	LoopCount (CODEC_FEAT_28)

	ResetsAllTime (CODEC_FEAT_29)

	BatV (CODEC_FEAT_30)

	ResetCause (CODEC_SPEC_16)

	
Specification: ResetCause CODEC_SPEC_16 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_15

links incoming: CODEC_FEAT_31, CODEC_FEAT_32, CODEC_FEAT_33, CODEC_FEAT_34, CODEC_FEAT_35, CODEC_FEAT_36, CODEC_FEAT_37

	Flags to indicate causes of the most recent microcontroller reset.

	Bit

	0

	1

	2

	3

	4

	5

	6

	7

	Description

	BOR (CODEC_FEAT_31)

	SVSH (CODEC_FEAT_32)

	WDT (CODEC_FEAT_33)

	MISC (CODEC_FEAT_34)

	LPM5WU (CODEC_FEAT_35)

	CLOCKFAIL (CODEC_FEAT_36)

	
	SCANTIMEOUT (CODEC_FEAT_37)

	
Specification: TNF + flags CODEC_SPEC_5 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

links incoming: CODEC_FEAT_17, CODEC_FEAT_18, CODEC_FEAT_19, CODEC_FEAT_20, CODEC_FEAT_21, CODEC_FEAT_22

	TNF and flags for the NDEF record.

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	MB (CODEC_FEAT_17)

	ME (CODEC_FEAT_18)

	CF (CODEC_FEAT_19)

	SR (CODEC_FEAT_20)

	IL (CODEC_FEAT_21)

	TNF (CODEC_FEAT_22)

	Data

	1

	1

	0

	0

	0

	0x03

	
Specification: Low memory utilisation CODEC_SPEC_4 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_REQ_12

links incoming: CODEC_FEAT_13, CODEC_FEAT_8, CODEC_FEAT_9, CODEC_FEAT_14, CODEC_FEAT_16

	The encoder must use <2K of RAM and <16K of non-volatile FRAM, as can be found on an
MSP430FR2033 microcontroller.

	
Specification: Reduce EEPROM wear CODEC_SPEC_2 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_REQ_8

links incoming: CODEC_FEAT_16, CODEC_SPEC_12

	

	
Specification: Low power consumption CODEC_SPEC_8 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_REQ_12

links incoming: CODEC_FEAT_14, CODEC_FEAT_16

	The encoder will run for >2 years on a hardware powered by a CR1620 battery.

	
Specification: Zero user configuration CODEC_SPEC_6 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_REQ_7

links incoming: CODEC_FEAT_27

	The encoder must run without input from the user. This includes after the Power-on-Reset
when a battery is replaced.

	
Specification: URL parameters decoded CODEC_SPEC_19 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_REQ_2

links incoming: CODEC_FEAT_43, CODEC_SPEC_10

	Before the circular buffer is decoded, URL parameters such as VFmt b64 (CODEC_SPEC_18) are needed.

	
Specification: Circular buffer decoded CODEC_SPEC_10 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_19

links incoming: CODEC_FEAT_40, CODEC_FEAT_27, CODEC_FEAT_6

	The decoder outputs a list of samples from the URL. Output
depends on FormatCode (CODEC_FEAT_42). By default samples will contain temperature
and humidity readings, converted to degrees C and percent respectively.
Each will have a timestamp precise to one minute.
This corresponds to the time that the sample was added to the circular buffer.

Features

NDEF message

	
Feature: NDEF message type CODEC_FEAT_1 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_1

	The message type is 0x03, corresponding to a known type.

	
Feature: NDEF message length CODEC_FEAT_2 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_1

	Message length in bytes as a 16-bit value.

Byte 2 is unused so 0xFF.
Byte 1 holds the Most Significant 8-bits.
Byte 0 holds the Least Significant 8 bits.

There is no function to change this after the message has been created.

NDEF record

	
Feature: Payload length CODEC_FEAT_3 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

	Length of the NDEF record payload length in bytes. Similar to NDEF message length (CODEC_FEAT_2),
it cannot change after the record has been created.

	
Feature: Type length CODEC_FEAT_4 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

	Length of the Record type (CODEC_FEAT_5) field in bytes. This is 1 byte.

	
Feature: Record type CODEC_FEAT_5 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

	NDEF record type is 0x55, which corresponds to a URI record.

URL Parameters

	
Feature: Sample interval b64 CODEC_FEAT_10 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

links incoming: CODEC_IMPL_1

	The time interval between samples in minutes. This must be constant.

	
Feature: Serial CODEC_FEAT_38 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_3

links incoming: CODEC_IMPL_8

	An 8 character serial string uniquely identifies the encoder instance. More generally this will
identify the hardware that the encoder is running on. Characters from the base64 dictionary are
recommended for these are URL safe.

	
Feature: CodecVersion CODEC_FEAT_41 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_SPEC_18, CODEC_FEAT_43

	16-bit unsigned integer codec version. From this the decoder can raise an error
if it is not compatible.

	
Feature: FormatCode CODEC_FEAT_42 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_SPEC_18

	8-bit identifier of the circular buffer format. The circular buffer is arranged into pairs.
A sample either corresponds to a pair of readings (e.g. temperature and humidity), or a single reading
(temperature only). The latter option doubles the number of samples in the buffer.

The device is specified as HDC2021. This allows the decoder to convert from the sensor ADC value (a 12-bit integer)
into floating point degrees C or percent. Equations [https://www.ti.com/document-viewer/HDC2021/datasheet/address-0x02-humidity-lsb-snas6782213#SNAS6782213]
to do this are device specific.

	FormatCode

	Definition

	0

	HDC2021_TRH_OnePairPerSample

	1

	HDC2021_T_OneReadingPerSample

	
Feature: Error raised if versions mismatch CODEC_FEAT_43 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_SPEC_19

links incoming: CODEC_FEAT_41

	If the decoder version does not match that of the encoder used to produce the URL, then Decoder reproduces encoder ... (CODEC_REQ_2)
cannot be guaranteed.

	
Feature: Protocol CODEC_FEAT_44 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: open

links outgoing: CODEC_SPEC_3

	The HTTPS protocol is recommended for production use.

	Protocol

	Definition

	0x03

	http://

	0x04

	https://

Status

	
Feature: LoopCount CODEC_FEAT_28 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_15

	The number of times the circular buffer has looped from the last EEPROM block to
the first since initialisation. See loopcount.

	
Feature: ResetsAllTime CODEC_FEAT_29 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_15

	Number of times the microcontroller running the encoder has reset. Each reset causes a counter to be incremented in
non-volatile memory (resetsalltime).

	
Feature: BatV CODEC_FEAT_30 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_15

	The battery voltage in mV. See batvoltage.

ResetCause

	
Feature: BOR CODEC_FEAT_31 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Brown Out Reset flag.

	
Feature: SVSH CODEC_FEAT_32 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Supply Voltage Supervisor error flag.

	
Feature: WDT CODEC_FEAT_33 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Watchdog Timeout flag

	
Feature: MISC CODEC_FEAT_34 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Miscellaneous Error flag

	
Feature: LPM5WU CODEC_FEAT_35 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Low Power Mode x.5 wakeup flag.

	
Feature: CLOCKFAIL CODEC_FEAT_36 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Clock failure flag.

	
Feature: SCANTIMEOUT CODEC_FEAT_37 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_16

	Scan timeout flag.

Circular Buffer

	
Feature: Error raised if hash check fails CODEC_FEAT_40 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_10

links incoming: CODEC_IMPL_5

	The decoder independently calculates the hash of the circular buffer and compares it with
the one contained in Endstop (CODEC_SPEC_13). If the check fails then no samples are returned
and an exception is raised.

If the MD5 hash is used then this indicates the decoded sample list does not correspond to that
fed into the encoder. Therefore Decoder reproduces encoder ... (CODEC_REQ_2) has not been met.

If the HMAC hash is used then there is an additional possibility: authentication has failed.
The secret key used by the encoder and the stored copy used by the decoder do not match. This occurs
when the software is run by an unauthorised 3rd party.

	
Feature: Adjustable buffer length. CODEC_FEAT_23 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_12

links incoming: CODEC_IMPL_3

	The length of the circular buffer can be adjusted. This is done with a compiler parameter,
to meet Only static memory allocati... (CODEC_FEAT_8).

	
Feature: Hash CODEC_FEAT_24 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_14

links incoming: CODEC_IMPL_5

	The list of samples in the buffer must always be transmitted together with a hash. This is used
by the decoder to verify that it has unwrapped the circular buffer and decoded samples correctly.

The size of the URL is limited, so there is only room to store the least significant 7 bytes of the hash,
however, this should be ample. The hash does not contain Elapsed b64 (CODEC_FEAT_26) and therefore it does not
need to be recalculated each time this changes. This is done in order to save power Low power consumption (CODEC_SPEC_8).

If Hash Based Message Authentication (HMAC) is enabled, then the last characters of the HMAC-MD5 will
be used. If not, these will be the output of MD5 only.

The hash is used as a checksum; a guard against unintentional data corruption. This may arise
because of a bug in the codec. The MD5 is sufficient for this purpose. It was chosen in order to adhere
with Low memory utilisation (CODEC_SPEC_4). The MD5 hash alone is useless for security purposes. If a bad actor
intends to find a collision (i.e. two sets of data that produce the same MD5 hash) then this can be done
with ease. MD5 is intended for debug and code development only.

HMAC-MD5 is considerably more secure than MD5 alone. It is recommended for production use. Each device with an encoder
should have a unique secret key. In addition to data integrity, HMAC-MD5 can be used to verify that the
decoder and encoder have access to the same shared secret key. It is therefore a check on authenticity.

	From Wikipedia [https://en.wikipedia.org/wiki/HMAC]:
	The cryptographic strength of the HMAC depends upon the size of the secret key that is used.
The most common attack against HMACs is brute force to uncover the secret key.
HMACs are substantially less affected by collisions than their underlying hashing algorithms alone.[6][7]
In particular, in 2006 Mihir Bellare proved that HMAC is a PRF under the sole assumption
that the compression function is a PRF.[8] Therefore, HMAC-MD5 does not suffer from the same weaknesses
that have been found in MD5.

…

For HMAC-MD5 the RFC summarizes that – although the security of the MD5 hash function itself is
severely compromised – the currently known “attacks on HMAC-MD5 do not seem to indicate a practical
vulnerability when used as a message authentication code”, but it also adds that
“for a new protocol design, a ciphersuite with HMAC-MD5 should not be included”.

It is acknowledged that HMAC-MD5 has been used despite the counter-recommendation above. I
decided that the increased complexity of HMAC-SHA3 cannot be justified: The algorithm has to run
with low energy consumption on an inexpensive microcontroller (see Encoder shall run on a low ... (CODEC_REQ_12)).
The MSP430 itself is not designed for a high degree of data security. De-lidding and X-raying are possible.
This is why it is important not to share the secret key between devices.
Opting for a more robust hashing algorithm may result in compromises elsewhere (e.g. on battery life). It is also the case that environmental sensor
data are being transmitted and not data that are highly sensitive. The reward to compromise this system
is sufficiently low to make HMAC-MD5 a good-enough deterrent.

Data are hashed in the following order:

	Byte

	Field

	Value

	0

	Pair[0]

	Reading0_MSB

	1

	Reading1_MSB

	2

	LSB

	3

	Pair[1]

	Reading0_MSB

	4

	Reading1_MSB

	5

	LSB

	…

	…

	

	L-11

	Pair[NPairs-1]

	Reading0_MSB

	L-10

	Reading1_MSB

	L-9

	LSB

	L-8

	LoopCount (CODEC_FEAT_28)

	MSB

	L-7

	LSB

	L-6

	ResetsAllTime (CODEC_FEAT_29)

	MSB

	L-5

	LSB

	L-4

	BatV (CODEC_FEAT_30)

	L-3

	ResetCause (CODEC_SPEC_16)

	L-2

	endstopindex

	MSB

	L-1

	LSB

	
Feature: NPairs CODEC_FEAT_25 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_14

links incoming: CODEC_IMPL_4

	Number of valid samples in the circular buffer. This excludes samples used for padding.
Populated from npairs.

	
Feature: Elapsed b64 CODEC_FEAT_26 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_13

links incoming: CODEC_IMPL_2

	External to the codec is a counter. This increases by 1 every minute after the previous
sample was written to the circular buffer. It resets to 0 when a new sample is written.

The decoder uses it to determine to the nearest minute when samples were collected. Without it,
the maximum resolution on the timestamp for each sample would be equal to the time interval, which
can be up to 60 minutes.

The unencoded minutes elapsed field is 16-bits wide. This is the same width
as the unencoded time interval in minutes field.

The minutes elapsed field occupies 4 bytes after base64 encoding, including one
padding byte. By convention this is 0x61 or ‘=’.

The encoder replaces the padding byte with ENDSTOP_BYTE. This marks the last byte of the end stop.

The first step performed by the decoder is to locate ENDSTOP_BYTE. After it is
found, it can be replaced with an ‘=’ before the minutes elapsed field is
decoded from base64 into its original 16-bit value.

Flags + TNF

	
Feature: MB CODEC_FEAT_17 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	Message Begin bit denotes the first record in an NDEF message.

This is set. The record is the first in the message.

	
Feature: ME CODEC_FEAT_18 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	Message End bit denotes the last record in an NDEF message.

This is set. The record is the last in the message.

	
Feature: CF CODEC_FEAT_19 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	Chunk Flag bit denotes a message comprised of several records chunked together (concatenated).

This is cleared. There is only one record in the message.

	
Feature: SR CODEC_FEAT_20 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	Short Record bit. When set Payload length (CODEC_FEAT_3) one byte long. When cleared it is 4 bytes long.

This is cleared, because the message is longer than 255 bytes.

	
Feature: IL CODEC_FEAT_21 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	ID Length bit. When set the ID length field is present. When cleared it is omitted.

This is cleared.

	
Feature: TNF CODEC_FEAT_22 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

tags: bit

links outgoing: CODEC_SPEC_5

	Type Name Format field. A 3-bit value that describes the record type.

This is set to 0x03, which corresponds to an Absolute URI Record.

Other

	
Feature: No absolute timestamp CODEC_FEAT_27 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_6, CODEC_SPEC_10

	The URL from the encoder cannot include an absolute timestamp. This would
need to be set each time the microcontroller is powered on (e.g. when the battery is replaced).

	
Feature: Samples timestamped by decoder CODEC_FEAT_6 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_10

links incoming: CODEC_IMPL_1

	All samples are timestamped relative to the time that the decoder is run. It
is assumed that the time difference between when the encoded message is read (by a phone) and
the time the decoder is run (on a web server) is much less than one minute. Timestamp precision is one
minute.

The timestamping algorithm is as follows:
#. Samples are put in order of recency.
#. Minutes Elapsed b64 (CODEC_FEAT_26) since the most recent sample is extracted from the URL.
#. Current time (now in UTC) is determined.
#. The first sample is assigned a timestamp = now - minutes elapsed.
#. Sample interval b64 (CODEC_FEAT_10) between samples is extracted from the URL. This is used to timestamp each sample
relative to the first.

	
Feature: Base URL CODEC_FEAT_7 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	

links outgoing: CODEC_SPEC_3

	The base URL can be changed. It is recommended to keep this as short as possible to
allow more room for environmental sensor data.

Low resource utilisation

	
Feature: Encoder writes to EEPROM blocks. CODEC_FEAT_13 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_4

	The encoder cannot output the 1000 character NDEF message in one go. This would require
too much RAM for a small microcontroller.

Instead it is designed to output an I2C EEPROM, which is arranged into
16-byte blocks. A maximum of 4 EEPROM blocks are written to or read from at a time.

	
Feature: Only static memory allocation is used. CODEC_FEAT_8 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_4

	The stdio library needed for malloc takes a lot of available memory on the MSP430, so it is not used.

	
Feature: Encoder is written in C. CODEC_FEAT_9 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_4

	There is little benefit to C++ given the low complexity of the encoder.

	
Feature: No RTOS is required CODEC_FEAT_14 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_8, CODEC_SPEC_4

	An RTOS is not appropriate for this application. It will significantly increase the memory footprint.
It will add complexity and make power consumption more difficult to control.

	
Feature: Status updates once per loop CODEC_FEAT_39 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_15

	Status contains some parameters that change infrequently. For these, Reduce EEPROM wear (CODEC_SPEC_2) is not a
concern. LoopCount (CODEC_FEAT_28) and BatV (CODEC_FEAT_30) are updated once, when cursorblk and nextblk
are at opposite ends of the circular buffer (e.g. cursorblk == 31 and nextblk == 0). This will
happen once per day.

ResetCause (CODEC_SPEC_16) is cleared when this happens, because a reset has not occurred recently.

	
Feature: Full message written on startup. CODEC_FEAT_12 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_1

links incoming: CODEC_IMPL_7

	The entire NDEF message only needs to be written once upon startup. Afterwards, small
parts of the message are modified at a time.

	
Feature: Append sample. CODEC_FEAT_15 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_12

links incoming: CODEC_IMPL_6

	The list of environmental sensor readings (and its HMAC) will change at an interval of
time interval minutes. If the time interval is set to 5 minutes, 100K writes will be
reached in (5 minutes * 100e3) = 1 year.

By using a circular buffer, these writes are distributed across many blocks. This is
a form of Wear levelling <https://en.wikipedia.org/wiki/Wear_leveling>.

	
Feature: The encoder writes two circular buffer blocks at a time. CODEC_FEAT_16 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_SPEC_4, CODEC_SPEC_2, CODEC_SPEC_8

	This reduces the requirement for RAM on the MSP430 and reduces power consumption (it takes time to write
EEPROM blocks).

Implementation

	
Implementation: Sample interval CODEC_IMPL_1 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_10, CODEC_FEAT_6

	The time interval between samples (in minutes) is defined in the global variable smplintervalmins.

ndef_writepreamble() converts smplintervalmins into a base64 string and writes it
to URL parameter ‘t’.

Decoder method decode_timeinterval converts this back to an integer.

	
Implementation: Elapsed time CODEC_IMPL_2 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_26

	The function enc_setelapsed() alters the elapsed time field, independent of the rest of the URL.
It is intended that this is called once for each minute after a sample is taken. Elapsed time (as an integer) is
converted to base64 and written to the end stop.

Base64 elapsed time is extracted in BufferDecoder and converted back to an integer.

	
Implementation: Length in blocks CODEC_IMPL_3 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_23

	Buffer length is set at compile time with BUFSIZE_BLKS.

	
Implementation: Length in samples CODEC_IMPL_4 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_25

	The function enc_pushsample() uses integer npairs to record how many valid samples
are in the circular buffer. When an demi is overwritten, it is reduced by PAIRS_PER_DEMI.
Otherwise it is incremented by one. When the buffer is full npairs will equal
buflenpairs.

	
Implementation: MD5 CODEC_IMPL_5 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_24, CODEC_FEAT_40

	The encoder maintains pairhistory, a RAM-based shadow of the EEPROM circular buffer.
It consumes a lot of RAM, but this is unavoidable.

On each call to enc_pushsample(), the sample is appended to pairhistory by
pairhist_push(). The hash (MD5 or HMAC) is calculated with pairhist_hash().
This outputs a 9 byte structure (hashn_t). It is converted to base64 (hashnb64)
before it is written to the endstop demis (Endstop (CODEC_SPEC_13)).

	
Implementation: Append sample CODEC_IMPL_6 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_15

	Samples are added to the circular buffer with enc_pushsample(). This takes one or two measurands,
depending on the circular buffer format.

	
Implementation: Initialisation CODEC_IMPL_7 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_12

	The NDEF message and its circular buffer are initialised with enc_init(). Given there are
no samples in the circular buffer, the endstop and cursor are omitted. All demis are set to MDaW
(all zeroes).

State machines in the sample and demi files are reset.

	
Implementation: Serial CODEC_IMPL_8 [image: ../../_images/arrow-down-circle.svg][image: ../../_images/arrow-right-circle.svg]

	
status: complete

links outgoing: CODEC_FEAT_38

	The serial string is defined in the global variable serial. This must be
SERIAL_LENBYTES long. It must contain only URL-safe characters.

ndef_writepreamble() copies this into URL parameter ‘s’.

Decoder

Decode a cuplcodec URL

The decoder extracts a timestamped list of samples from a cuplcodec URL.

	
wscodec.decoder.decoderfactory._get_decoder(formatcode: int [https://docs.python.org/3/library/functions.html#int])

	
	Parameters

	formatcode – Value of the codec format field. Specifies which decoder shall be returned.

	Returns

	

	Return type

	Decoder class for the given format code.

	
wscodec.decoder.decoderfactory.decode(secretkey: str [https://docs.python.org/3/library/stdtypes.html#str], statb64: str [https://docs.python.org/3/library/stdtypes.html#str], timeintb64: str [https://docs.python.org/3/library/stdtypes.html#str], circb64: str [https://docs.python.org/3/library/stdtypes.html#str], vfmtb64: str [https://docs.python.org/3/library/stdtypes.html#str], usehmac: bool [https://docs.python.org/3/library/functions.html#bool] = True, scantimestamp: Optional[datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]] = None) → wscodec.decoder.samples.SamplesURL

	Decode the version string and extract codec version and format code. An error is raised if the codec version does
not match. A decoder object is returned based on the format code. An error is raised if no decoder is available
for the code.

	Parameters

	
	secretkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMAC secret key as a string. Normally 16 characters long.

	statb64 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value of the URL parameter that holds status information (base64 encoded).

	timeintb64 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value of the URL parameter that holds the time interval between samples in minutes (base64 encoded).

	circb64 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value of the URL parameter that contains the circular buffer of base64 encoded samples.

	vfmtb64 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value of the URL parameter that contains the version and format string (base64 encoded).

	usehmac (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the hash inside the circular buffer endstop is HMAC-MD5. False if it is MD5.

	scantimestamp (datetime) – The time that the tag was scanned. All decoded samples will be timestamped relative to this.

	Returns

	An object containing a list of timestamped environmental sensor samples.

	Return type

	SamplesURL

[image: Inheritance diagram of wscodec.decoder.hdc2021.TempRH_URL, wscodec.decoder.hdc2021.Temp_URL]

	
class wscodec.decoder.hdc2021.TempRH_URL(*args, **kwargs)

	

	
class wscodec.decoder.hdc2021.Temp_URL(*args, **kwargs)

	

	
class wscodec.decoder.samples.SamplesURL(*args, timeintb64: str [https://docs.python.org/3/library/stdtypes.html#str], scantimestamp: Optional[datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]] = None, **kwargs)

	This holds a list of decoded sensor samples. Each needs a timestamp, but this must be calculated. There
are no absolute timestamps in the URL. First, all times are relative to scantimestamp (when the tag was
scanned).

The URL does contain self.elapsedmins (the minutes elapsed since the newest sample was acquired). This makes it
possible to calculate self.newest_timestamp, the timestamp of the newest sample.

Every subsequent sample is taken at a fixed time interval relative to self.newest_timestamp. This time interval
is decoded from timeintb64 into self.timeinterval.

	Parameters

	
	*args – Variable length argument list

	timeintb64 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Time interval between samples in minutes, base64 encoded into a 4 character string.

	scantimestamp (datetime) – Time the tag was scanned. It corresponds to the time the URL on the tag is requested from the web server.

	**kwargs – Keyword arguments to be passed to parent class constructors.

	
generate_timestamp()

	
	Yields

	A timestamp of a sample, calculated relative to that of the newest sample.

	
get_samples_list()

	
	Returns

	

	Return type

	Samples as a list of dictionaries. This is done for compatibility purposes.

	
class wscodec.decoder.pairs.PairsURL(*args, usehmac: bool [https://docs.python.org/3/library/functions.html#bool] = False, secretkey: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	This takes the payload of the linearised buffer, which is a long string of base64 characters. It decodes this
into a list of pairs. The hash (MD5 or HMAC-MD5) is taken and compared with that supplied in the URL by the
encoder. If the hashes match then the decode has been successful. If not, an exception is raised.

	Parameters

	
	*args – Variable length argument list.

	usehmac (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the hash inside the circular buffer endstop is HMAC-MD5. False if it is MD5.

	secretkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMAC secret key as a string. Normally 16 characters long.

	**kwargs – Keyword arguments to be passed to parent class constructors.

	
_decode_pairs()

	The payload string is converted into a list of 8-byte demis (see demi).

The first demi is the newest; its data have been written to the circular buffer most recently,
so it closest to the left of the endstop. It can contain either one or two pairs.
This is decoded first.

Subsequent (older) demis each contain 2 pairs. These are decoded. The final list of pairs is in
chronological order with the newest first and the oldest last.

	
static _dividestring(source: str [https://docs.python.org/3/library/stdtypes.html#str], n: int [https://docs.python.org/3/library/functions.html#int])

	
	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to be divided.

	n – The number of characters in each substring.

	Returns

	

	Return type

	A list of substrings, each containing n characters.

	
static _gethash(message: bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], usehmac: bool [https://docs.python.org/3/library/functions.html#bool], secretkey: str [https://docs.python.org/3/library/stdtypes.html#str])

	Calculates the hash of a message.

	Parameters

	
	message (bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) – Input data to the hashing algorithm.

	usehmac (bool [https://docs.python.org/3/library/functions.html#bool]) – When True the HMAC-MD5 algorithm is used. Otherwise MD5 is used (not recommended for production).

	secretkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMAC secret key as a string. Normally 16 characters long.

	Returns

	
	digest (str) – The message hash.

	hashtype (HashType) – The hash algorithm used.

	
_pairsfromdemi(demi: str [https://docs.python.org/3/library/stdtypes.html#str]) → List[wscodec.decoder.pairs.Pair]

	Decode a demi into 2 pairs.

	Parameters

	demi (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string containing 8 base64 characters.

	Returns

	Element 0 is the oldest pair, decoded from the first 4 demi characters.
Element 1 is the newest pair, decoded from the last 4 demi characters.

	Return type

	A list of 2 pairs

	
_verify(usehmac: bool [https://docs.python.org/3/library/functions.html#bool], secretkey: str [https://docs.python.org/3/library/stdtypes.html#str])

	Calculate a hash from the list of pairs according to the same algorithm used
by the encoder (see pairhist_hash). Besides pairs, data from the status URL parameter
are included. This makes it very unlikely that the same data will be hashed twice, as well as ‘protecting’
the status parameter from modification by a 3rd party.

A fragment of the calculated hash is compared with that supplied by the encoder. If the hashes agree then
verification is successful. If not, an exception is raised.

	Parameters

	
	usehmac (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the hash inside the circular buffer endstop is HMAC-MD5. False if it is MD5.

	secretkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – HMAC secret key as a string. Normally 16 characters long.

	Raises

	MessageIntegrityError – If the hash calculated by this decoder does not match the hash provided by the encoder.:

	
class wscodec.decoder.circularbuffer.CircularBufferURL(statb64: str [https://docs.python.org/3/library/stdtypes.html#str], circb64: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Base class for a cuplcodec URL.

This includes at least a circular buffer with a long string of base64 encoded sample data and
a short status field.

Instantiation decodes the status string first. It contains error information from the microcontroller running
the encoder.

Next it locates the ENDSTOP_BYTE in the circular buffer string. Characters to its left are the newest.
Characters to its right are the oldest. The circular buffer is unwrapped into a string where ENDSTOP_BYTE is
the last character and the oldest data is in the first.

The linearised buffer is further divided into two parts:
The endstop string (including the endstop itself) are at the end. It contains metadata such as the number of
samples in the payload. This is preceded by the payload string, which contains a list base64-encocded
environmental sensor readings. These are in chronological order oldest-to-newest reading left-to-right.

The decoding of the payload string is handled elsewhere.

	Parameters
	
	statb64str
	Base64 encoded status string extract from a URL parameter.

	circb64str
	A long string containing base64 encoded samples that are organised as a circular buffer.

	
ELAPSED_LEN_BYTES = 4

	Length of the endstop elapsed minutes field in bytes (including the endstop itself).

	
ENDSTOP_BYTE = '~'

	The last character in the endstop and the end of the circular buffer. Must be URL safe.

	
ENDSTOP_LEN_BYTES = 16

	Length of the endstop in bytes.

	
_decode_endstop()

	Decode the circular buffer endstop. This can be over-ridden by a child of this class
if the endstop data needs to change in future.

	
_decode_status()

	Instantiate a Status object. This can be over-ridden by a child of this class
if the Status data needs to change in future.

	
_linearise()

	Linearise the circular buffer.

The circular buffer is made linear by concatenating the two parts of the buffer
either side of the end stop.

Sample

[image: Inheritance diagram of wscodec.decoder.hdc2021.TempSample, wscodec.decoder.hdc2021.TempRHSample]

	
class wscodec.decoder.hdc2021.TempRHSample(rawtemp: int [https://docs.python.org/3/library/functions.html#int], rawrh: int [https://docs.python.org/3/library/functions.html#int], timestamp: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime])

	
	
static reading_to_rh(reading: int [https://docs.python.org/3/library/functions.html#int]) → float [https://docs.python.org/3/library/functions.html#float]

	
	Parameters

	reading – Integer Relative Humidity ADC reading from the HDC2021.

	Returns

	Relative Humidity in percent.

	
class wscodec.decoder.hdc2021.TempSample(rawtemp: int [https://docs.python.org/3/library/functions.html#int], timestamp: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime])

	
	
static reading_to_temp(reading: int [https://docs.python.org/3/library/functions.html#int]) → float [https://docs.python.org/3/library/functions.html#float]

	
	Parameters

	reading – Integer temperature ADC reading from the HDC2021.

	Returns

	Temperature in degrees C

	
class wscodec.decoder.samples.Sample(timestamp: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime])

	Sample base class. All samples must contain a timestamp.

Pair

	
class wscodec.decoder.pairs.Pair(rd0MSB: int [https://docs.python.org/3/library/functions.html#int], rd1MSB: int [https://docs.python.org/3/library/functions.html#int], Lsb: int [https://docs.python.org/3/library/functions.html#int])

	Class representing a pair of 12-bit sensor readings.

In the URL each pair consists of a 4 byte (base64) string. These decode to 3 8-bit bytes. The last contains
4-bits from reading0 and 4-bits from reading 1.

When this class is instantiated, the 3 8-bit bytes are converted back into two 12-bit readings.

	Parameters

	
	rd0MSB (int [https://docs.python.org/3/library/functions.html#int]) – Most Signficant Byte of environmental sensor reading0.

	rd1MSB (int [https://docs.python.org/3/library/functions.html#int]) – Most Significant Byte of environmental sensor reading1.

	Lsb (int [https://docs.python.org/3/library/functions.html#int]) – Upper 4-bits are the least significant bits of reading0.
Lower 4-bits are the least significant bits of reading1.

	
classmethod from_b64(pairb64: str [https://docs.python.org/3/library/stdtypes.html#str])

	
	Parameters

	str4 (str [https://docs.python.org/3/library/stdtypes.html#str]) – A 4 character string that represents a base64 encoded pair. These are extracted from the circular buffer.

	Returns

	

	Return type

	A pair instantiated from the 4 character string.

	
classmethod from_bytes(bytes: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	
	Parameters

	bytes (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The 3 bytes that make up a pair rd0MSB, rd1MSB and Lsb.

	Returns

	

	Return type

	A pair instantiated from the 3 byte input.

	
readings()

	
	Returns

	

	Return type

	A dictionary containing both 12-bit readings.

Status

	
class wscodec.decoder.status.Status(statb64: str [https://docs.python.org/3/library/stdtypes.html#str])

	Decode the status string.

	Parameters

	statb64 – Value of the URL parameter that holds status information (after base64 encoding).

	
get_batvoltagemv()

	
	Returns

	Battery voltage converted to mV.

	
get_batvoltageraw()

	
	Returns

	Battery voltage as an 8-bit value.

	
get_resetcauseraw()

	
	Returns

	Reset cause as an 8-bit value.

C Encoder

Enc C Reference

Defines

	
HDC2021_TEMPRH

	Last character of the URL version string if the URL contains both temperature and relative humidity measurands.

	
HDC2021_TEMPONLY

	Last character of the URL version string if the URL contains only temperature measurands.

	
ENDSTOP_BYTE

	Last character of the endstop. Must be URL safe according to RFC 1738.

	
BATV_RESETCAUSE(BATV, RSTC)

	Macro for creating a 16-bit batv_resetcause value from 8-bit CODEC_FEAT_30 and CODEC_SPEC_16 values.

Enums

	
enum pairbufstate_t

	Values:

	
enumerator pairbuf_initial

	

	
enumerator pair0_both

	Write pair0

	
enumerator pair0_reading1

	Overwrite reading1 of pair0

	
enumerator pair1_both

	Write pair1

	
enumerator pair1_reading1

	Overwrite reading1 of pair1

Functions

	
void fram_write_enable(void)

	Enable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void fram_write_disable(void)

	Disable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
static bool one_reading_per_sample(void)

	

	
static void incr_loopcounter(void)

	Update loop counter and battery voltage in the preamble status field.

Calls a function to measure battery voltage, increases loopcount and clears the battery reset field. These data are base64 encoded and written to EEPROM. ndef_writepreamble overwrites the bufferred circular buffer blocks so these must be read again after with demi_restore.

	
static void set_elapsed(unsigned int minutes)

	Update the endmarker of the endstop with elapsed time in minutes.

	Parameters

	minutes – Minutes elapsed since the previous sample.

	
static void set_pair(pair_t *pair, int rd0, int rd1)

	Write one pair.

	Parameters

	
	pair – Pointer to the pair that will be modified.

	rd0 – Reading 0 (12 bits).

	rd1 – Reading 1 (12 bits).

	
static void set_rd1(pair_t *pair, int rd1)

	Overwrite reading1 in a pair This is used when the format stipulates one reading per pair (see CODEC_FEAT_42).

	Parameters

	
	pair – Pointer to the pair that will be modified.

	rd1 – Reading 1 (12 bits).

	
unsigned int enc_getbatv(void)

	Get battery voltage from the status field. This is a value from 0-255. Step size increases exponentially. 255 corresponds to 1V5. 0 is infinity.

	
void enc_init(unsigned int resetcause, bool err, unsigned int batv)

	Initialise the encoder state machine. Writes the.

	Parameters

	
	resetcause – 16-bit status value.

	err – Sets an error condition where data will not be logged to the URL circular buffer.

	batv – Battery voltage from ADC (not in mv).

	
void enc_setelapsed(unsigned int minutes)

	Update the base64 encoded endstop and write it to the tag.

	Parameters

	minutes – Minutes elapsed since the previous sample.

	
int enc_pushsample(int rd0, int rd1)

	Push a sample containing up to two readings onto the circular buffer.

	Parameters

	
	rd0 – First reading in the sample e.g. temperature.

	rd1 – Second reading in the sample (optional) e.g. relative humidity.

	Returns

	1 if the cursor has moved from the end to the start and data are being overwritten. Otherwise 0.

Variables

	
nv_t nv

	Externally defined parameters stored in non-volatile memory.

	
int overwriting = 0

	

	
pair_t pairbuf[2] = {0}

	Stores two unencoded 3-byte pairs.

	
unsigned int npairs = 0

	Number of base64 encoded pairs in the circular buffer, starting from the endstop and counting backwards.

	
pairbufstate_t state = pairbuf_initial

	Pair buffer write state.

	
endstop_t endstop = {0}

	The 16 byte end stop.

	
stat_t status = {0}

	Structure to hold unencoded status data.

	
struct stat_t

	
Public Members

	
uint16_t loopcount

	Number of times the last demi in the circular buffer endstop has wrapped from the end to the beginning.

	
uint16_t resetsalltime

	2-byte status. Bits are set according to stat_bits.h

	
uint16_t batv_resetcause

	Battery voltage in mV

	
struct endstop_t

	
Public Members

	
char hashnb64[12]

	MD5 length field containing a base64 encoded hashn_t.

	
char markerb64[4]

	End-stop marker comprised of base64 encoded minutes since the previous sample and ENDSTOP_BYTE

	
struct endmarker_t

	
Public Members

	
char elapsedLSB

	Minutes elapsed since previous sample (Least Significant Byte).

	
char elapsedMSB

	Minutes elapsed since previous sample (Most Signficant Byte).

PairHist C Reference

This maintains a circular buffer named pairhistory. It contains all pairs that are in the NDEF message circular buffer stored in the NFC-readable EEPROM. A crucial difference is that pairhistory is stored in RAM, so its contents can be accessed quickly.

This allows for a hash to be taken of the unencoded circular buffer pairs, each time this list changes. The decoder uses this to verify that it has decoded the circular buffer faithfully: It must output the same list of pairs, as fed to the encoder with multiple calls to enc_pushsample().

After decoding the circular buffer, the hash is calculated. The decoder checks this equals the encoder hash, which is extracted from endstop_t::hashnb64 in the NDEF message. If it does not, an error is raised and no data are returned.

The hash function can either be MD5 [https://en.wikipedia.org/wiki/MD5] or HMAC-MD5 [https://en.wikipedia.org/wiki/HMAC] The former is a simple checksum for debugging the codec. It should not be used in production, because it is no good as a hash function and collisions can be found easily. The HMAC-MD5 should be used instead. A detailed discussion can be found in the CODEC_FEAT_24.

When a pair is pushed to or overwritten in the NDEF message, pairhistory must be updated with pairhist_push() and pairhist_ovr() respectively. This ensures that the output of pairhist_hash() will be accurate.

	
struct pair_t

	#include <pairhist.h>Structure to hold one sample consisting of two 12-bit readings.

Public Members

	
unsigned char rd0Msb

	Reading0 Most significant byte.

	
unsigned char rd1Msb

	Reading1 Most significant byte.

	
unsigned char Lsb

	Least significant 4-bit nibbles of reading0 and reading1.

	
struct hashn_t

	#include <pairhist.h>Structure to hold hash and npairs as per CODEC_SPEC_14.

Public Members

	
unsigned char hash[7]

	Last 7 bytes of the MD5 or HMAC-MD5 hash.

	
unsigned char npairs[2]

	Number of valid pairs in the circular buffer.

Defines

	
MD5DIGESTLEN_BYTES

	Length of the MD5 digest (output) in bytes.

	
MD5BLKLEN_BYTES

	Length of the MD5 input message block in bytes.

Functions

	
void fram_write_enable(void)

	Enable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void fram_write_disable(void)

	Disable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void pairhist_ovr(pair_t pair)

	Overwrites the most recent pair in the history buffer. This is used when the format stipulates one reading per sample (rather than one pair per sample). For the first sample, a full pair is written with The second reading is set to an invalid value. On the next sample, the second reading in the pair is overwritten, so the history buffer must be overwritten with pairhist_ovr.

	Parameters

	pair – New value of the most recent pair.

	
void pairhist_init()

	Initialise the cursorindex The circular buffer itself (pairhistory) does not need to be initialised.

	
void pairhist_push(pair_t pair)

	Pushes a new pair onto the history buffer. This operation overwrites an old pair if the circular buffer is full.

	Parameters

	pair – Value of the new pair.

	
pair_t pairhist_read(unsigned int offset, int *error)

	Reads one pair at an offset from the end of pairhistory. This function makes it possible to read pairhistory as if it was a linear buffer.

	Parameters

	
	offset – When 0, the most recent pair is returned. When 1, the 2nd most recent pair is returned. When BUFLEN_PAIRS-1, the oldest pair is returned. Any larger offset is invalid.

	error – Pointer to an error variable. This is set to 1 when offset exceeds the length of the circular buffer (BUFLEN_PAIRS-1). It is 0 otherwise.

	Returns

	A pair read from pairhistory or a struct containing 3 zeroes if an error has occurred.

	
hashn_t pairhist_hash(int npairs, int usehmac, unsigned int loopcount, unsigned int resetsalltime, unsigned int batv_resetcause, int endstopindex)

	Calculates a hash from pairhistory and other state variables.

The hash is calculated according to the table in CODEC_FEAT_24. If HMAC is enabled then the output is the last seven bytes of the HMAC-MD5 digest. If it is not then the hash is an MD5 checksum only. Note that the latter is intended for debug purposes only.

The MD5 is calculated iteratively 64 bytes at a time with multiple calls to MD5_Update().

	Parameters

	
	npairs – The number of pairs from pairhistory to include in the hash.

	usehmac – When 0 the hash is MD5 only. Otherwise it is HMAC-MD5.

	loopcount – Number of times the circular buffer cursor has looped (or wrapped) from the end to the beginning.

	resetsalltime – Number of times the host firmware has logged a Power-on-Reset.

	batv_resetcause – 8-bit battery voltage concatenated with the 8-bit resetcause variable.

	endstopindex – Offset of the ENDSTOP_BYTE relative to the start of the NDEF message circular buffer.

	Returns

	A value of type hashn_t. This contains the last 7 hash bytes together with npairs.

Variables

	
nv_t nv

	

	
pair_t pairhistory[BUFLEN_PAIRS] = {0}

	Array of unencoded pairs. This mirrors the circular buffer of base64 encoded pairs stored in EEPROM.

	
int cursorindex = -1

	Index marking the end of the circular buffer. The most recent sample is stored here. The next index contains the oldest sample.

	
unsigned char msgblock[MD5BLKLEN_BYTES]

	Block to hold message data as an input to the MD5 algorithm.

	
const int buflenpairs = BUFLEN_PAIRS

	Length of the circular buffer in pairs.

	
static const char ipadchar = 0x36

	Inner padding byte for HMAC as defined in RFC 2104 [https://tools.ietf.org/html/rfc2104#section-2].

	
static const char opadchar = 0x5C

	Outer padding byte for HMAC as defined in RFC 2104 [https://tools.ietf.org/html/rfc2104#section-2].

	
static MD5_CTX ctx

	MD5 context.

Demi C Reference

Writes to a circular buffer of 8-byte demis. This is stored in an NFC readable EEPROM e.g. the NXP NT3H2111 [https://www.nxp.com/docs/en/data-sheet/NT3H2111_2211.pdf].

An EEPROM block is 16 bytes long. Demi is short for demi-block; it is 8 bytes long. A majority of transactions write 3 demis:
	Demi0: Two base64 encoded pairs (pair_t) comprised of 4x sensor readings.

	Demis1 and 2: Circular buffer endstop (endstop_t).

Demis are written to an EEPROM location given by _cursordemi:
	Even values of _cursordemi start at byte 0 of an EEPROM block.

	Odd values of _cursordemi start at byte 8 of an EEPROM block. A demi always fits completely into one EEPROM block, it never stradles two.

The function demi_movecursor() adds 1 to _cursordemi or resets it to 0 if the end of the circular buffer _enddemi has been reached.

There is no need to move the cursor after every write; the same 3 demis can be overwritten. If only one of the two available pairs in Demi0 changes at a time, the cursor is only moved after both have been produced. This applies if the format specifies OnePairPerSample (see CODEC_FEAT_42).

Sometimes only one demi needs to be overwritten: Demi2 contains minutes elapsed since the previous sample (::markerb64). This is overwritten every minute between samples. For this only one EEPROM block needs to be modified with demi_commit2(). This saves power, because writing to an I2C EEPROM is slow.

When all 3 demis are modified, 4 demis (two EEPROM blocks) must be written with demi_commit4().

Whilst the code allows for 1,2 or 3 demis to be edited locally, the EEPROM must be read and written in multiples of 2 demis i.e. one block at a time. Two blocks of EEPROM are buffered at all times. This buffer must be updated:
	After the cursor is moved to a new location with demi_movecursor() or demi_init().

	Before any write operations with demi_write()

This preserves data in the extra demi, which will either be after demi2 or before demi0. The buffer update is done with demi_readcursor(). It deduces which EEPROM blocks to copy into the local buffer based on _cursordemi.

Defines

	
DEMI0

	Write first demi after the cursor.

	
DEMI1

	Write second demi after cursor.

	
DEMI2

	Write third demi after the cursor.

Typedefs

	
typedef enum DemiState DemiState_t

	Structure to describe the state of the EEPROM circular buffer.

Enums

	
enum DemiState

	Structure to describe the state of the EEPROM circular buffer.

Values:

	
enumerator ds_consecutive

	_cursorblk is not 0 and _nextblk is located at the next EEPROM block.

	
enumerator ds_looparound

	_cursorblk is at the end of the circular buffer and _nextblk is at the beginning. Data are overwritten from the first time this occurs.

	
enumerator ds_newloop

	_cursorblk is 0 and _nextblk is 1. A new loop of the circular buffer has started.

Defines

	
DEMI_TO_BLK(demi)

	Maps a demi to its EEPROM block.

	
IS_ODD(x)

	Returns 1 if x is ODD and 0 if x is EVEN.

Functions

	
void fram_write_enable(void)

	Enable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void fram_write_disable(void)

	Disable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
static void demi_read4(void)

	Copy 4 demis from EEPROM into RAM.

This is 2 demis from _cursorblk and 2 demis from the block after it _nextblk. If _cursorblk is at the end of the buffer, then _nextblk will be at the start. This makes the buffer circular.

	
static void demi_shift2read2(void)

	Right shift the RAM buffer by 2 demis and append 2 demis read from the _nextblk.

First: RAM buffer is right shifted by one block, overwriting the previous cursor block with the new cursor block. Second: New contents of _nextblk are copied out of EEPROM into the vacant RAM buffer block.

The right shift saves a slow and unnecessary read of _cursorblk from EEPROM.

	
void demi_commit4(void)

	Copy 4 demis from RAM to EEPROM.

	
void demi_commit2(void)

	Write the last 2 demis from RAM to the EEPROM.

Some functions only need to modify the last 2 demis so this saves time and energy over writing 4.

	
void demi_init(const int startblk, const int lenblks)

	Initialise the EEPROM circular buffer.

Reads the first 4 demis in RAM.

	Parameters

	
	startblk – EEPROM block to start the circular buffer.

	lenblks – Length of circular buffer in EEPROM blocks.

	
int demi_write(int offsetdemis, char *demidata)

	Overwrite one demi in the RAM buffer.

The function to modify the RAM buffer eep_cp() requires a byte index relative to _cursorblk.

	When _cursordemi is EVEN, nothing is needs to be done because it lies on a block boundary.

	When _cursordemi is ODD then it is offset from the block boundary by one demi. Therefore one is added to offsetdemis.

	Parameters

	
	offset – Demi index to overwrite, relative to _cursordemi. Must be 0, 1 or 2.

	demidata – Pointer to an 8 byte array of new demi data.

	
DemiState_t demi_movecursor(void)

	

	
void demi_readcursor(void)

	Update RAM buffer to contain the 4 demis after _cursordemi.

This function must be called each time the cursor position is changed.

When _cursordemi is 0 it is assumed that the RAM buffer is empty, so all 4 demis are read. When _cursordemi is not 0, it is assumed that the RAM buffer has been populated before. It is also assumed that _cursordemi has only moved once since the previous time this function was called. Therefore it is not necessary to read 4 more demis out of the EEPROM.

	
int demi_getendmarkerpos(void)

	

Variables

	
int _endblk = 0

	Last EEPROM block in the circular buffer.

	
int _startblk = 0

	First EEPROM block in the circular buffer.

	
int _cursorblk = 0

	Cursor address in terms of 16-byte EEPROM blocks. Must be >= _startblk and <= _endblk.

	
int _nextblk = 0

	Address of the next EEPROM block after cursor block. The buffer is circular, so it can be < _cursorblk.

	
int _enddemi = 0

	Largest possible value of _cursordemi. Always an odd integer.

	
int _cursordemi = 0

	Cursor in terms of 8-byte demis. Must be >= 0 and <= _enddemi.

NVType C Reference

A file for organising configuration data stored in Non-Volatile memory.

These data are read by several parts of the encoder, where it is declared as an external global variable.

The variable definition depends on how the encoder is being run:
	When running under CFFI (see PyEncoder) nv is defined in nvtype.c

	When running as part of a larger project (e.g. the cupl Tag firmware) nv must be defined elsewhere.

The intention is for nv to occupy the 512 byte MSP430 information FRAM [https://www.ti.com/document-viewer/MSP430FR2155/datasheet/memory-organization-slasec43899#SLASEC43899].

	Date
	6 Aug 2018

	Author
	Malcolm Mackay

	Copyright
	Plotsensor Ltd.

Defines

	
SERIAL_LENBYTES

	Length of the tag serial string in bytes.

	
SECKEY_LENBYTES

	Length of the secret key used for HMAC-MD5 in bytes.

	
BASEURL_LENBYTES

	Maximum length of the base URL string in bytes.

	
SMPLINT_LENBYTES

	Length of the sample interval (minutes) integer in bytes.

	
VFMTINT_LENBYTES

	VFmt character array length in bytes.

	
FORMAT_ASCII_MAXLEN

	Maximum length of the format ASCII string.

	
MINVOLTAGEMV_ASCII_MAXLEN

	Maximum length of the minimum voltage (mV) ASCII string.

	
SMPLINTERVAL_ASCII_MAXLEN

	Maximum length of the sample interval string.

Typedefs

	
typedef struct nvstruct nv_t

	Structure to hold configuration data held in non-volatile memory.

	
struct nvstruct

	#include <nvtype.h>Structure to hold configuration data held in non-volatile memory.

Public Members

	
char serial[SERIAL_LENBYTES]

	Alphanumeric serial of the tag running the cupl encoder.

	
char seckey[SECKEY_LENBYTES]

	Secret key string used for HMAC-MD5.

	
char smplintervalmins[SMPLINT_LENBYTES]

	Time interval betweeen samples in minutes.

	
char baseurl[BASEURL_LENBYTES]

	URL of the cupl Web Application frontend.

	
char format

	Codec format byte.

	
unsigned int minvoltagemv

	Minimum startup voltage in mV.

	
unsigned int usehmac

	When non-zero enable HMAC otherwise use MD5 only.

	
unsigned int httpsdisable

	When non-zero use HTTP in the URL otherwise use HTTPS.

	
unsigned int sleepintervaldays

	Number of days to wait without scans before putting the cupl Tag into deep sleep mode.

	
unsigned int allwritten

	When non-zero all required NV parameters have been set.

	
unsigned int resetsperloop

	Incremented each time the tag microcontroller resets. Zeroed when the circular buffer loops around (see ds_looparound).

	
unsigned int resetsalltime

	Incremented each time the tag microcontroller resets.

Functions

	
void fram_write_enable()

	Enable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void fram_write_disable()

	Disable writes to FRAM. Should be defined in the processor-specific cuplTag project.

Variables

	
nv_t nv = {.serial="AAAACCCC", .seckey="AAAACCCC"}

	Externally defined parameters stored in non-volatile memory.

Eep C Reference

Defines

	
BUFSIZE_BLKS

	

	
BUFSIZE_BYTES

	

Functions

	
void fram_write_enable(void)

	Enable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
void fram_write_disable(void)

	Disable writes to FRAM. Should be defined in the processor-specific cuplTag project.

	
static inline int inbounds(int byteindex)

	Checks if a byte index is within the bounds the buffer array.

This can be used to prevent the program from accessing memory that is out of bounds.

	Parameters

	byteindex – Index of a buffer byte that is to be read or written.

	Returns

	0 if the index is less than the size of the buffer and can be accessed safely. Otherwise 1.

	
int eep_write(const int eepblk, const unsigned int bufblk)

	Write a 16-byte block from the buffer to EEPROM.

	Parameters

	
	eepblk – Block of the EEPROM to write to.

	bufblk – Block of the buffer to write from.

	Returns

	1 if the block to be written greater than the buffer size. 0 on success and -1 on write error.

	
void eep_waitwritedone()

	Block until the EEPROM block write has finished.

Writes of Flash memory take some milliseconds to complete.

	
int eep_read(const int eepblk, const unsigned int bufblk)

	Read a 16-byte block from EEPROM to the buffer.

	Parameters

	
	eepblk – EEPROM block to read.

	bufblk – Block of the buffer to copy the EEPROM contents to.

	
int eep_swap(const unsigned int srcblk, const unsigned int destblk)

	Swap two buffer blocks.

	Parameters

	
	srcblk – The buffer block to read from.

	destblk – The buffer block to write to.

	
int eep_cp(int *indexptr, const char *dataptr, const int lenbytes)

	Copy data from a pointer into the buffer.

	Parameters

	
	indexptr – Data are copied into the buffer starting from this index. An integer from 0 to N-1, where N is the size of the buffer. indexptr is overwritten by the index one greater than the last data to be written.

	dataptr – Data are copied from this pointer.

	lenbytes – The number of bytes to copy into the buffer from dataptr.

	Returns

	0 if the data to be copied will fit entirely in the buffer. Otherwise 1.

	
int eep_cpbyte(int *indexptr, const char bytedata)

	Copy one byte into the buffer.

	Parameters

	
	indexptr – The byte is copied into this index of the buffer. An integer from 0 to N-1, where N is the size of the buffer. indexptr is overwritten by indexptr+1.

	bytedata – Byte to be copied into the buffer.

	Returns

	0 if indexptr is an index that will not overflow the buffer. Otherwise 1.

Variables

	
char _blkbuffer[BUFSIZE_BLKS * BLKSIZE] = {0}

	

NDEF C Reference

Defines

	
URL_RECORDTYPE

	NDEF record type for a URL.

	
URL_RECORDTYPE_LEN

	Length of the NDEF record type in bytes.

	
SMPLINTKEY_LEN

	Length of the sample interval key string in bytes.

	
SMPLINTB64_LEN

	Length of the encoded sample interval string in bytes.

	
SERIALKEY_LEN

	Length of the serial key string in bytes.

	
VERKEY_LEN

	Length of the vfmt key string in bytes.

	
VFMTB64_LEN

	Length of the encoded VFmt data in bytes.

	
STATKEY_LEN

	Length of the status key string in bytes.

	
STATB64_LEN

	Length of the encoded status string in bytes.

	
CBUFKEY_LEN

	Length of the circular buffer key string in bytes.

	
NDEF_RECORD_HEADER_LEN

	Length of the NDEF record header in bytes.

	
TL_LEN

	Length of the Tag and Length fields of the NDEF message TLV in bytes.

	
TAG_NDEF_MESSSAGE

	Tag indicating the TLV block contains an NDEF message.

	
WELLKNOWN_TNF

	Record Type follows the Record Type Definition (RTD) format.

	
URI_ID_HTTP

	URI Identifier Code for the HTTP protocol.

	
URI_ID_HTTPS

	URI Identifier Code for the HTTPS protocol.

Functions

	
static void ndef_createurlrecord(int *eepindex, int msglenbytes, int httpsDisable)

	Create a URL NDEF Record.

	Parameters

	
	eepindex – Position in the 64-byte array that buffers data to be written into EEPROM.

	msglenbytes – NDEF Message Length in bytes.

	
void ndef_calclen(int *paddinglen, int *preamblenbytes, int *urllen)

	

	
int ndef_writepreamble(int buflenblks, char *statusb64)

	Write the part of the URL before the circular buffer.

	Parameters

	
	buflenblks – Circular buffer length in 16-byte EEPROM blocks.

	statusb64 – Pointer to a base64 encoded status structure.

	Returns

	1 if buflenblks is not even.

	
void ndef_writeblankurl(int buflenblks, char *statusb64, int *bufstartblk)

	Write an NDEF message containing one URL record to EEPROM. The URL contains a circular buffer. This is populated with a placeholder text - all zeroes - initially.

	Parameters

	
	buflenblks – Circular buffer length in 16-byte EEPROM blocks.

	statusb64 – Pointer to a base64 encoded status structure.

	bufstartblk – The circular buffer start block is written to this pointer.

Variables

	
nv_t nv

	

	
static const char serialkey[] = "&s="

	Seperator, key and equals before the serial string.

	
static const char cbufkey[] = "&q="

	Seperator, key and equals before the circular buffer string.

	
static const char verkey[] = "&v="

	Seperator, key and equals before the vfmt string.

	
static const char statkey[] = "&x="

	Seperator, key and equals before the status string.

	
static const char smplintkey[] = "/?t="

	Start of parameters followed by a key and equals for the sample interval string.

	
static const char zeropad[] = "MDAw"

	4 characters that base64 decode to 0,0,0

	
union TNFFlags_t

	
Public Members

	
unsigned char all

	

	
unsigned char tnf

	Type Name Format field.

	
unsigned char idpresent

	ID present flag. 1 if the ID field is present.

	
unsigned char srecord

	Short record flag. 1 if the payload length field is 1 byte long.

	
unsigned char chunkflag

	Chunk flag. 1 if this is the first or middle record in a chunked message.

	
unsigned char msgend

	Message end flag. 1 if this is the last record in the message.

	
unsigned char msgbegin

	Message begin flag. 1 if this is the first record in the message.

	
struct TNFFlags_t::[anonymous] byte

	

	
union len_t

	
Public Members

	
unsigned long all

	

	
unsigned char bytes[4]

	

Defs Header File

Defines

	
CODEC_VERSION

	

	
BYTES_PER_DEMI

	The number of bytes per demi.

	
DEMIS_PER_BLK

	The number of demis per block.

	
PAIRS_PER_DEMI

	The number of base64 encoded pairs per demi.

	
BUFLEN_BLKS

	Length of the circular buffer in 16-byte blocks.

	
ENDSTOP_BLKS

	Endstop length in 16-byte blocks.

	
ENDMARKER_OFFSET_IN_ENDSTOP_1

	

	
BLKSIZE

	

	
BUFLEN_PAIRS

	

NT3H C Reference

Warning

doxygenfile: Cannot find file “nt3h.c

Python Wrapped Encoder (PyEncoder)

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedBase(ffimodule, baseurl, serial, secretkey, smplintervalmins, batteryadc=100, format=1, resetsalltime=0, usehmac=True, httpsdisable=False)

	Put some documentation here

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedDemi(baseurl='plotsensor.com', serial='AAAACCCC', secretkey='AAAACCCC', smplintervalmins=12)

	

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedNDEF(baseurl='plotsensor.com', serial='AAAACCCC', secretkey='AAAACCCC', smplintervalmins=12)

	

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedPairhist(baseurl='plotsensor.com', serial='AAAACCCC', secretkey='AAAACCCC', smplintervalmins=12)

	

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedSample(baseurl='plotsensor.com', serial='AAAACCCC', secretkey='AAAACCCC', smplintervalmins=12, batteryadc=100, format=1, resetsalltime=0, usehmac=True, httpsdisable=False)

	
	
pushsamplelist(trhlist: list [https://docs.python.org/3/library/stdtypes.html#list])

	
	Parameters

	trhlist – a list of dictionaries each containing temperature and relative humidity keys.

	Returns

	None

	
rh_percent_to_raw(rhpc)

	Converts from relative humidity in percent to a raw ADC value for the Texas HDC2010.

	
temp_degc_to_raw(degc)

	Converts degrees C to a raw ADC value for the Texas HDC2010.

	
updateendstop(minutes: int [https://docs.python.org/3/library/functions.html#int])

	Update the endstop with minutes elapsed since the most recent sample.

	Parameters

	minutes – Minutes elapsed since the most recent sample.

	Returns

	None

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedSampleT(serial='ABCDEFGH', secretkey='AAAACCCC11112222', baseurl='plotsensor.com', smplintervalmins=12, resetsalltime=0, batteryadc=100, resetcause=0, usehmac=True, httpsdisable=False, tagerror=False, format=2)

	

	
class wscodec.encoder.pyencoder.instrumented.InstrumentedSampleTRH(serial='ABCDEFGH', secretkey='AAAACCCC11112222', baseurl='plotsensor.com', smplintervalmins=12, resetsalltime=0, batteryadc=100, resetcause=0, usehmac=True, httpsdisable=False, tagerror=False, format=1)

	

	
class wscodec.encoder.pyencoder.unitc.CFFIGenerator(blacklist)

	

	
class wscodec.encoder.pyencoder.unitc.FunctionList(source)

	

	
wscodec.encoder.pyencoder.unitc.load(filename, depfilenames=[])

	Load a file

Mock EEPROM

	
class wscodec.encoder.pyencoder.eeprom.Eeprom(sizeblocks: int [https://docs.python.org/3/library/functions.html#int])

	A mock of the NT3H2111 EEPROM, based on a bytearray. There are methods to read and write from this in 16-byte blocks.
Helper methods parse the entire EEPROM contents as an NDEF message. This mimics what a phone will do when it reads
the NT3H2111 using NFC.

The EEPROM will normally contain the output of the cupl Encoder: an NDEF message containing one NDEF record.
This itself will contain a URL. One of the parameters in the query string is ‘q’, which contains the circular
buffer of temperature and relative humidity samples.

	
decode_ndef() → ndef.record.Record

	Decode the NDEF message.

	Returns

	First NDEF record in the message

	
display_block(block: int [https://docs.python.org/3/library/functions.html#int]) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Display one EEPROM block.

	Parameters

	block – Address of the block to display.

	Returns

	Block data as a list of 16 bytes.

	
get_message() → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Extract the NDEF message bytes from EEPROM.

	Returns

	NDEF message bytearray

	
get_qdemis() → list [https://docs.python.org/3/library/stdtypes.html#list]

	
	Returns

	The value of URL parameter ‘q’ as a list of 8-byte demis.

	
get_qparam() → str [https://docs.python.org/3/library/stdtypes.html#str]

	
	Returns

	The value of URL parameter ‘q’ as a string.

	
get_url() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Obtain URL from the NDEF record stored in EEPROM.

	Returns

	URL string

	
get_url_parsed() → urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]

	Parse URL in the EEPROM NDEF record.

	Returns

	Parsed URL

	
get_url_parsedqs() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parse parameters in the query string [https://en.wikipedia.org/wiki/Query_string]

	Returns

	A dictionary of URL parameters.

	
read_block(block: int [https://docs.python.org/3/library/functions.html#int], blkdata: ctypes.c_char_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p])

	Read one block into a pointer.

	Parameters

	
	block – Address if the block to read.

	blkdata – Pointer to an array of 16 bytes that the block will be read into.

	Returns

	None

	
write_block(block: int [https://docs.python.org/3/library/functions.html#int], blkdata: ctypes.c_char_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p])

	Write one block from a pointer.

	Parameters

	
	block – Address of the block to write

	blkdata – Pointer to an array of 16 bytes that will be written to the block.

	Returns

	None

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wscodec	

 	
 	
 wscodec.decoder.circularbuffer	

 	
 	
 wscodec.decoder.decoderfactory	

 	
 	
 wscodec.decoder.status	

 	
 	
 wscodec.encoder.pyencoder.instrumented	

 	
 	
 wscodec.encoder.pyencoder.unitc	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	_blkbuffer (C++ member)

 	_cursorblk (C++ member)

 	_cursordemi (C++ member)

 	_decode_endstop() (wscodec.decoder.circularbuffer.CircularBufferURL method)

 	_decode_pairs() (wscodec.decoder.pairs.PairsURL method)

 	_decode_status() (wscodec.decoder.circularbuffer.CircularBufferURL method)

 	_dividestring() (wscodec.decoder.pairs.PairsURL static method)

 	_endblk (C++ member)

 	
 	_enddemi (C++ member)

 	_get_decoder() (in module wscodec.decoder.decoderfactory)

 	_gethash() (wscodec.decoder.pairs.PairsURL static method)

 	_linearise() (wscodec.decoder.circularbuffer.CircularBufferURL method)

 	_nextblk (C++ member)

 	_pairsfromdemi() (wscodec.decoder.pairs.PairsURL method)

 	_startblk (C++ member)

 	_verify() (wscodec.decoder.pairs.PairsURL method)

B

 	
 	BASEURL_LENBYTES (C macro)

 	BATV_RESETCAUSE (C macro)

 	BLKSIZE (C macro)

 	BUFLEN_BLKS (C macro)

 	
 	BUFLEN_PAIRS (C macro)

 	buflenpairs (C++ member)

 	BUFSIZE_BLKS (C macro)

 	BUFSIZE_BYTES (C macro)

 	BYTES_PER_DEMI (C macro)

C

 	
 	cbufkey (C++ member)

 	CBUFKEY_LEN (C macro)

 	CFFIGenerator (class in wscodec.encoder.pyencoder.unitc)

 	
 	CircularBufferURL (class in wscodec.decoder.circularbuffer)

 	CODEC_VERSION (C macro)

 	ctx (C++ member)

 	cursorindex (C++ member)

D

 	
 	decode() (in module wscodec.decoder.decoderfactory)

 	decode_ndef() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	DEMI0 (C macro)

 	DEMI1 (C macro)

 	DEMI2 (C macro)

 	demi_commit2 (C++ function)

 	demi_commit4 (C++ function)

 	demi_getendmarkerpos (C++ function)

 	demi_init (C++ function)

 	demi_movecursor (C++ function)

 	demi_read4 (C++ function)

 	
 	demi_readcursor (C++ function)

 	demi_shift2read2 (C++ function)

 	DEMI_TO_BLK (C macro)

 	demi_write (C++ function)

 	DEMIS_PER_BLK (C macro)

 	DemiState (C++ enum)

 	DemiState::ds_consecutive (C++ enumerator)

 	DemiState::ds_looparound (C++ enumerator)

 	DemiState::ds_newloop (C++ enumerator)

 	DemiState_t (C++ type)

 	display_block() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

E

 	
 	eep_cp (C++ function)

 	eep_cpbyte (C++ function)

 	eep_read (C++ function)

 	eep_swap (C++ function)

 	eep_waitwritedone (C++ function)

 	eep_write (C++ function)

 	Eeprom (class in wscodec.encoder.pyencoder.eeprom)

 	ELAPSED_LEN_BYTES (wscodec.decoder.circularbuffer.CircularBufferURL attribute)

 	enc_getbatv (C++ function)

 	enc_init (C++ function)

 	enc_pushsample (C++ function)

 	enc_setelapsed (C++ function)

 	
 	ENDMARKER_OFFSET_IN_ENDSTOP_1 (C macro)

 	endmarker_t (C++ struct)

 	endmarker_t::elapsedLSB (C++ member)

 	endmarker_t::elapsedMSB (C++ member)

 	endstop (C++ member)

 	ENDSTOP_BLKS (C macro)

 	ENDSTOP_BYTE (C macro)

 	(wscodec.decoder.circularbuffer.CircularBufferURL attribute)

 	ENDSTOP_LEN_BYTES (wscodec.decoder.circularbuffer.CircularBufferURL attribute)

 	endstop_t (C++ struct)

 	endstop_t::hashnb64 (C++ member)

 	endstop_t::markerb64 (C++ member)

F

 	
 	FORMAT_ASCII_MAXLEN (C macro)

 	fram_write_disable (C++ function), [1], [2], [3], [4]

 	fram_write_enable (C++ function), [1], [2], [3], [4]

 	
 	from_b64() (wscodec.decoder.pairs.Pair class method)

 	from_bytes() (wscodec.decoder.pairs.Pair class method)

 	FunctionList (class in wscodec.encoder.pyencoder.unitc)

G

 	
 	generate_timestamp() (wscodec.decoder.samples.SamplesURL method)

 	get_batvoltagemv() (wscodec.decoder.status.Status method)

 	get_batvoltageraw() (wscodec.decoder.status.Status method)

 	get_message() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	get_qdemis() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	
 	get_qparam() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	get_resetcauseraw() (wscodec.decoder.status.Status method)

 	get_samples_list() (wscodec.decoder.samples.SamplesURL method)

 	get_url() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	get_url_parsed() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	get_url_parsedqs() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

H

 	
 	hashn_t (C++ struct)

 	hashn_t::hash (C++ member)

 	
 	hashn_t::npairs (C++ member)

 	HDC2021_TEMPONLY (C macro)

 	HDC2021_TEMPRH (C macro)

I

 	
 	inbounds (C++ function)

 	incr_loopcounter (C++ function)

 	InstrumentedBase (class in wscodec.encoder.pyencoder.instrumented)

 	InstrumentedDemi (class in wscodec.encoder.pyencoder.instrumented)

 	InstrumentedNDEF (class in wscodec.encoder.pyencoder.instrumented)

 	
 	InstrumentedPairhist (class in wscodec.encoder.pyencoder.instrumented)

 	InstrumentedSample (class in wscodec.encoder.pyencoder.instrumented)

 	InstrumentedSampleT (class in wscodec.encoder.pyencoder.instrumented)

 	InstrumentedSampleTRH (class in wscodec.encoder.pyencoder.instrumented)

 	ipadchar (C++ member)

 	IS_ODD (C macro)

L

 	
 	len_t (C++ union)

 	len_t::all (C++ member)

 	
 	len_t::bytes (C++ member)

 	load() (in module wscodec.encoder.pyencoder.unitc)

M

 	
 	MD5BLKLEN_BYTES (C macro)

 	MD5DIGESTLEN_BYTES (C macro)

 	MINVOLTAGEMV_ASCII_MAXLEN (C macro)

 	
 module

 	wscodec.decoder.circularbuffer

 	wscodec.decoder.decoderfactory

 	wscodec.decoder.status

 	wscodec.encoder.pyencoder.instrumented

 	wscodec.encoder.pyencoder.unitc

 	
 	msgblock (C++ member)

N

 	
 	ndef_calclen (C++ function)

 	ndef_createurlrecord (C++ function)

 	NDEF_RECORD_HEADER_LEN (C macro)

 	ndef_writeblankurl (C++ function)

 	ndef_writepreamble (C++ function)

 	npairs (C++ member)

 	nv (C++ member), [1], [2]

 	nv_t (C++ type)

 	nvstruct (C++ struct)

 	nvstruct::allwritten (C++ member)

 	
 	nvstruct::baseurl (C++ member)

 	nvstruct::format (C++ member)

 	nvstruct::httpsdisable (C++ member)

 	nvstruct::minvoltagemv (C++ member)

 	nvstruct::resetsalltime (C++ member)

 	nvstruct::resetsperloop (C++ member)

 	nvstruct::seckey (C++ member)

 	nvstruct::serial (C++ member)

 	nvstruct::sleepintervaldays (C++ member)

 	nvstruct::smplintervalmins (C++ member)

 	nvstruct::usehmac (C++ member)

O

 	
 	one_reading_per_sample (C++ function)

 	
 	opadchar (C++ member)

 	overwriting (C++ member)

P

 	
 	Pair (class in wscodec.decoder.pairs)

 	pair_t (C++ struct)

 	pair_t::Lsb (C++ member)

 	pair_t::rd0Msb (C++ member)

 	pair_t::rd1Msb (C++ member)

 	pairbuf (C++ member)

 	pairbufstate_t (C++ enum)

 	pairbufstate_t::pair0_both (C++ enumerator)

 	pairbufstate_t::pair0_reading1 (C++ enumerator)

 	pairbufstate_t::pair1_both (C++ enumerator)

 	
 	pairbufstate_t::pair1_reading1 (C++ enumerator)

 	pairbufstate_t::pairbuf_initial (C++ enumerator)

 	pairhist_hash (C++ function)

 	pairhist_init (C++ function)

 	pairhist_ovr (C++ function)

 	pairhist_push (C++ function)

 	pairhist_read (C++ function)

 	pairhistory (C++ member)

 	PAIRS_PER_DEMI (C macro)

 	PairsURL (class in wscodec.decoder.pairs)

 	pushsamplelist() (wscodec.encoder.pyencoder.instrumented.InstrumentedSample method)

R

 	
 	read_block() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	reading_to_rh() (wscodec.decoder.hdc2021.TempRHSample static method)

 	
 	reading_to_temp() (wscodec.decoder.hdc2021.TempSample static method)

 	readings() (wscodec.decoder.pairs.Pair method)

 	rh_percent_to_raw() (wscodec.encoder.pyencoder.instrumented.InstrumentedSample method)

S

 	
 	Sample (class in wscodec.decoder.samples)

 	SamplesURL (class in wscodec.decoder.samples)

 	SECKEY_LENBYTES (C macro)

 	SERIAL_LENBYTES (C macro)

 	serialkey (C++ member)

 	SERIALKEY_LEN (C macro)

 	set_elapsed (C++ function)

 	set_pair (C++ function)

 	set_rd1 (C++ function)

 	SMPLINT_LENBYTES (C macro)

 	SMPLINTB64_LEN (C macro)

 	SMPLINTERVAL_ASCII_MAXLEN (C macro)

 	
 	smplintkey (C++ member)

 	SMPLINTKEY_LEN (C macro)

 	stat_t (C++ struct)

 	stat_t::batv_resetcause (C++ member)

 	stat_t::loopcount (C++ member)

 	stat_t::resetsalltime (C++ member)

 	STATB64_LEN (C macro)

 	state (C++ member)

 	statkey (C++ member)

 	STATKEY_LEN (C macro)

 	status (C++ member)

 	Status (class in wscodec.decoder.status)

T

 	
 	TAG_NDEF_MESSSAGE (C macro)

 	temp_degc_to_raw() (wscodec.encoder.pyencoder.instrumented.InstrumentedSample method)

 	Temp_URL (class in wscodec.decoder.hdc2021)

 	TempRH_URL (class in wscodec.decoder.hdc2021)

 	TempRHSample (class in wscodec.decoder.hdc2021)

 	TempSample (class in wscodec.decoder.hdc2021)

 	TL_LEN (C macro)

 	TNFFlags_t (C++ union)

 	
 	TNFFlags_t::all (C++ member)

 	TNFFlags_t::byte (C++ member)

 	TNFFlags_t::chunkflag (C++ member)

 	TNFFlags_t::idpresent (C++ member)

 	TNFFlags_t::msgbegin (C++ member)

 	TNFFlags_t::msgend (C++ member)

 	TNFFlags_t::srecord (C++ member)

 	TNFFlags_t::tnf (C++ member)

U

 	
 	updateendstop() (wscodec.encoder.pyencoder.instrumented.InstrumentedSample method)

 	URI_ID_HTTP (C macro)

 	
 	URI_ID_HTTPS (C macro)

 	URL_RECORDTYPE (C macro)

 	URL_RECORDTYPE_LEN (C macro)

V

 	
 	verkey (C++ member)

 	VERKEY_LEN (C macro)

 	
 	VFMTB64_LEN (C macro)

 	VFMTINT_LENBYTES (C macro)

W

 	
 	WELLKNOWN_TNF (C macro)

 	write_block() (wscodec.encoder.pyencoder.eeprom.Eeprom method)

 	
 wscodec.decoder.circularbuffer

 	module

 	
 wscodec.decoder.decoderfactory

 	module

 	
 	
 wscodec.decoder.status

 	module

 	
 wscodec.encoder.pyencoder.instrumented

 	module

 	
 wscodec.encoder.pyencoder.unitc

 	module

Z

 	
 	zeropad (C++ member)

Decoder

Decode a URL

Use the decoder.Decoder class

Encoder

Initialise

Start with a call to enc_init(). This creates an NDEF message with one URI record.
The latter consists of the Base URL followed by a query string.

The query includes parameters Time interval, Version and Serial. These data do not
change subsequent to initialisation.

The final parameter in the query string is ‘q=’. Its value is the circular buffer of sensor data.
This is a few hundred characters long. The character after ‘q=’ must fall on an EEPROM block boundary.

The circular buffer grows to a maximum length of (buflenpairs) as samples are added.
Regardless, it is always encoded into a base64 string of fixed length. This is due to a constraint:
the NDEF message has a fixed length defined by payload-length. This is not altered after initialisation.
The constraint is imposed to simplify code, reduce power consumption and minimise wear on EEPROM block 0.

To this end, the circular buffer parameter is initialised with a repeating sequence ‘MDaW’ for its
entire length. Each 4-byte MDaW decodes to 3-bytes all zeros.

Append Samples

Update minutes elapsed in the end stop

Non-volatile Parameters

These include the Serial, secret key, Time interval and Base URL fields.
They are stored in the user memory section of the MSP430.

PSCodec

The codec comprises an encoder and a decoder. The former takes an array of
samples as an input and outputs a URL. The latter performs the reverse
operation; it takes the URL as an input and outputs an array of samples.

Timestamps

A feature of PSCodec is that each sample does not include an absolute timestamp.
There is an RTC on the PSHardware, but it is only used to measure
time intervals of one minute.

Without the requirement for absolute time,
the user is not burdened with setting it like they have to on a wristwatch
or a cooker.

Instead PSCodec provides all necessary information for sample timestamps
to be reconstructed based on:

	Now (UTC), the time the PSCodec URL is received by PSWebApp. This coincides
with the time the sensor is scanned by a phone.

	Minutes elapsed. The time difference between Now (UTC) and when the most
recent sample was taken.

	Time interval in minutes between samples. This is a constant time interval
between all samples in the buffer.

The reconstructed timestamps will be accurate to within one minute, which is
sufficient for most datalogging applications.

Message Authentication

The URL contains a Hash-Based-Message-Authentication-Code or HMAC. This is made by taking the MD5 checksum of some data,
concatenating this with a secret key (seckey) and then taking the MD5 of the result.

At the provisioning stage, a random secret key is generated that is unique to each sensor. This is a shared secret:
it is stored both by the web application and in the sensor.

The encoder computes the HMAC every time a new sample is collected (i.e. for each call of enc_pushsample).
When PSCodec decodes a capture, it verifies the HMAC. If this fails an error is raised. The web application can
respond by not storing the capture data and notifying the user with error 409.

NDEF Preamble

	NDEF Msg.

	Type

	Length

	Value

	NDEF Rec.

	
	Header

	Payload

	
	
	
	
	
	Rec Hdr

	Type Len

	Payload Length

	Rec. Type

	URL Prefix

	Byte

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	Data

	0x03

	0xFF

	MSB

	LSB

	
	0x01

	PL[3]

	PL[2]

	PL[1]

	PL[0]

	0x55

	0x03

Payload Length

NDEF message length in bytes as a 32-bit value. MSB first.

URL Header

	NDEF Msg.

	Value

	NDEF Rec.

	Payload

	Desc.

	Base URL

	Time interval

	Serial

	Version

	Status

	CircBufferStart

	Data

	t.plotsensor.com

	/?t=AWg*

	&s=YWJjZGVm

	&v=01

	&x=AAABALEK

	&q=

Base URL

See non-volatile parameter baseurl.

Serial

See non-volatile parameter serial.

Time interval

Time interval between samples in minutes is base64 encoded. Whilst the encoded string is 4 bytes long, the last character
must always be a padding byte (an URL safe replacement for ‘=’). Therefore the unencoded time interval can only be 2 bytes long.
This is to match with the format of the minutes Elapsed field.

It is programmed as non-volatile parameter smplintervalmins.

Version

The version parameter determines which ParamDecoder shall be used by Decoder:

	TEMPONLY TDecoder Two temperature measurands per sample seperated by Time interval.

	TEMPRH HTDecoder Temperature and relative humidity measurands in a sample.

This is programmed as non-volatile parameter version.

Status

	Byte

	0

	1

	2

	3

	4

	5

	Description

	LoopCount

	ResetsAllTime

	BatV

	RstC

The status field is 6 bytes long unencoded. It corresponds to status. After base64 encoding
this becomes 8 bytes long.

LoopCount

See loopcount.

ResetsAllTime

Number of times the microcontroller running the encoder has reset. Each reset causes a counter to be incremented in
non-volatile memory (resetsalltime).

BatV

See batvoltage.

RstC

Reset condition

URL Circular Buffer

The sample arrays are ordered from the most recent at the top (element 0) to the oldest.

Demis are placed onto a circular buffer.
The end of the buffer is marked by an endstop. Immediately to the left of
the endstop is the demi containing the most recent sample data.
The demi to the right contains the oldest sample data.

Samples

Each sample contains two 12-bit measurands. These are organised as follows

The encoder stores samples using the pair_t type.

Rd0Msb

Measurand 1 Most significant 8-bits (see rd0Msb).

Rd1Msb

Measurand 2 Most significant 8-bits (see rd1Msb).

LSB

The least signficant 4-bit nibbles of M1 and M2 (see Lsb).

	Bit

	0

	1

	2

	3

	4

	5

	6

	7

	Description

	M1[3:0]

	M2[3:0]

Chunks

Each 6-byte chunk contains two samples.

The encoder starts at the oldest sample and groups input data into 6 byte chunks.
Byte 0 of the chunk contains the oldest data and Byte 5 contains the newest.
Each chunk contains two samples.

The chunk containing the most recent data can be partially full.
In this case it is padded with samples that contain ‘0’. The number of samples
is written to the Length field in the endstop of the URL.
With this information the decoder discards the samples used for padding.

Demis

	Demi

	0

	SampleB64

	0

	1

	Byte

	0

	1

	2

	3

	4

	5

	6

	7

6-byte chunks are base64 encoded into 8-byte demis. This is done using only URL-safe characters.

Blocks

Each 16-byte block contains two demis.

	Block

	0

	1

	…

	MSGLEN-1

	Demi

	0

	1

	2

	3

	…

	…

	…

	2*MSGLEN-1

Endstop

	Cursor Block

	Next Block

	Newest Demi

	Endstop 1

	Endstop 2

	Oldest Demi

The endstop marks the end of the circular buffer. It is 16-bytes wide and it can span 2 blocks as shown above.

Immediately to the left of the endstop is the Demi containing the most recent sample data.

The demi to the right contains the oldest sample data or zero padding if the buffer is not full.

Elapsed (base64) and end marker

The minutes elapsed counter increments by 1 every minute after the previous sample
was collected. It resets to 0 when a new sample is collected.

The decoder uses it to determine to the nearest minute when samples were collected.

The unencoded minutes elapsed field is 16-bits wide. This is the same width
as the unencoded time interval in minutes field.

The minutes elapsed field occupies 4 bytes after base64 encoding, including one
padding byte. By convention this is 0x61 or ‘=’.

The encoder replaces the padding byte with ENDSTOP_BYTE. This marks the last byte of the end stop.

The first step performed by the decoder is to locate ENDSTOP_BYTE. After it is
found, it can be replaced with an ‘=’ before the minutes elapsed field is
decoded from base64 into its original 16-bit value.

HashN

This is 9 bytes long unencoded and 12 bytes long encoded. The C structure to hold these data
hashn_t is shown below:

	Byte

	0

	1

	2

	3

	4

	5

	6

	7

	8

	Description

	MD5

	LengthSamples

MD5

Least significant 7 bytes of the MD5 checksum taken of all samples in the buffer.

LengthSamples

The number of valid samples in the circular buffer. This is populated from npairs.

Install

Create the Python Package Distributions

A Python package is created so that the urldecoder can
be used easily by other applications such as PSWebApp.

This is based on the instructions at
https://packaging.python.org/tutorials/packaging-projects/

	In the command line navigate to PSCodec/urldecoder

	Increase the version number in setup.py

	Generate the tar.gz source archive and .whl built distribution:

python3 setup.py sdist bdist_wheel

Generating bdist_wheel will invoke GCC, to call the compile() method on the ffibuilder objects defined in build scripts
such as ndef_builder.py The result is a sharedobject binary for each script, which can later be imported.
All build scripts and links to the ffibuilder objects within are inside the cffi_modules field of setup.py

I used Building_Chuck_Norris_Part_5 [https://dmerej.info/blog/post/chuck-norris-part-5-python-cffi/] and Building_and_distributing_packages_with_setuptools [https://setuptools.readthedocs.io/en/latest/setuptools.html]
and Preparing_and_distributing_cffi_modules [https://cffi.readthedocs.io/en/latest/cdef.html] as guidance.

Installing from source requires the GCC compiler. If the person installing is using a platform compatible with a wheel,
(same OS, same Python version and compatible C libraries) then they can used the precompiled binaries inside that.

Install the Python package in a pipenv

Install the pscodec module from a source file:

pipenv install dist/PSCodec-0.0.4.tar.gz

Install the pscodec from a wheel:

pipenv install dist/PSCodec-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl

Develop C and run tests from the latest source code

This installs the package in place and compiles any sharedobject modules for c_encoder:

python setup.py develop

Build Documentation

Edit restructuredtext files inside the docs folder. Then run:

python run make html

Test

To run tests invoke pytest:

pipenv run pytest encoder/test_ndef.py

Overview

The encoder is written in C. The C Foreign Function Interface (CFFI) compiles
selected encoder modules and their dependencies into a Python
shared object (see pyencoder.unitc.load()).

The shared object is imported into another Python script, which makes
calls to the C functions inside.

CFFI can replace C function definitions with Python.
This is required for functions that normally depend on hardware,
such as nt3h_writetag() and nt3h_readtag().
Objects derived from pyencoder.instrumented.InstrumentedBase
redirect the two functions above to write to and read from a mock EEPROM,
written in Python.

The mock EEPROM is a bytearray that can be accessed in 16-byte blocks. Its
contents can be read out raw or parsed as an NDEF message using the NDEF library.

Example 2

Call ndef_writeblankurl() to write a
URL within a URI record inside an NDEF message to EEPROM.

To return the URL from the mock EEPROM as a string use.
pyencoder.eeprom.get_url()

Example

The following example covers how to build pyencoder and run unit tests on the
NDEF encoder module.

First run:

pipenv run python pyencoder/builder.py

This will cause CFFI to compile the C modules into shared objects
for your platform. The *.so files are written to the pyencoder/sharedobjects directory.

To perform unit tests on the NDEF module run:

pipenv run pytest ndeftests.py

1 pycparser v2.19

	Author

	Eli Bendersky [https://eli.thegreenplace.net/]

Contents

	1 pycparser v2.19

	1.1 Introduction

	1.1.1 What is pycparser?

	1.1.2 What is it good for?

	1.1.3 Which version of C does pycparser support?

	1.1.4 What grammar does pycparser follow?

	1.1.5 How is pycparser licensed?

	1.1.6 Contact details

	1.2 Installing

	1.2.1 Prerequisites

	1.2.2 Installation process

	1.2.3 Known problems

	1.3 Using

	1.3.1 Interaction with the C preprocessor

	1.3.2 What about the standard C library headers?

	1.3.3 Basic usage

	1.3.4 Advanced usage

	1.4 Modifying

	1.5 Package contents

	1.6 Contributors

	1.7 CI Status

1.1 Introduction

1.1.1 What is pycparser?

pycparser is a parser for the C language, written in pure Python. It is a
module designed to be easily integrated into applications that need to parse
C source code.

1.1.2 What is it good for?

Anything that needs C code to be parsed. The following are some uses for
pycparser, taken from real user reports:

	C code obfuscator

	Front-end for various specialized C compilers

	Static code checker

	Automatic unit-test discovery

	Adding specialized extensions to the C language

One of the most popular uses of pycparser is in the cffi [https://cffi.readthedocs.io/en/latest/] library, which uses it to parse the
declarations of C functions and types in order to auto-generate FFIs.

pycparser is unique in the sense that it’s written in pure Python - a very
high level language that’s easy to experiment with and tweak. To people familiar
with Lex and Yacc, pycparser’s code will be simple to understand. It also
has no external dependencies (except for a Python interpreter), making it very
simple to install and deploy.

1.1.3 Which version of C does pycparser support?

pycparser aims to support the full C99 language (according to the standard
ISO/IEC 9899). Some features from C11 are also supported, and patches to support
more are welcome.

pycparser supports very few GCC extensions, but it’s fairly easy to set
things up so that it parses code with a lot of GCC-isms successfully. See the
FAQ [https://github.com/eliben/pycparser/wiki/FAQ] for more details.

1.1.4 What grammar does pycparser follow?

pycparser very closely follows the C grammar provided in Annex A of the C99
standard (ISO/IEC 9899).

1.1.5 How is pycparser licensed?

BSD license [https://github.com/eliben/pycparser/blob/master/LICENSE].

1.1.6 Contact details

For reporting problems with pycparser or submitting feature requests, please
open an issue [https://github.com/eliben/pycparser/issues], or submit a
pull request.

1.2 Installing

1.2.1 Prerequisites

	pycparser was tested on Python 2.7, 3.4-3.6, on both Linux and
Windows. It should work on any later version (in both the 2.x and 3.x lines)
as well.

	pycparser has no external dependencies. The only non-stdlib library it
uses is PLY, which is bundled in pycparser/ply. The current PLY version is
3.10, retrieved from http://www.dabeaz.com/ply/

Note that pycparser (and PLY) uses docstrings for grammar specifications.
Python installations that strip docstrings (such as when using the Python
-OO option) will fail to instantiate and use pycparser. You can try to
work around this problem by making sure the PLY parsing tables are pre-generated
in normal mode; this isn’t an officially supported/tested mode of operation,
though.

1.2.2 Installation process

Installing pycparser is very simple. Once you download and unzip the
package, you just have to execute the standard python setup.py install. The
setup script will then place the pycparser module into site-packages in
your Python’s installation library.

Alternatively, since pycparser is listed in the Python Package Index [https://pypi.org/project/pycparser/] (PyPI), you can install it using your
favorite Python packaging/distribution tool, for example with:

> pip install pycparser

1.2.3 Known problems

	Some users who’ve installed a new version of pycparser over an existing
version ran into a problem using the newly installed library. This has to do
with parse tables staying around as .pyc files from the older version. If
you see unexplained errors from pycparser after an upgrade, remove it (by
deleting the pycparser directory in your Python’s site-packages, or
wherever you installed it) and install again.

1.3 Using

1.3.1 Interaction with the C preprocessor

In order to be compilable, C code must be preprocessed by the C preprocessor -
cpp. cpp handles preprocessing directives like #include and
#define, removes comments, and performs other minor tasks that prepare the C
code for compilation.

For all but the most trivial snippets of C code pycparser, like a C
compiler, must receive preprocessed C code in order to function correctly. If
you import the top-level parse_file function from the pycparser package,
it will interact with cpp for you, as long as it’s in your PATH, or you
provide a path to it.

Note also that you can use gcc -E or clang -E instead of cpp. See
the using_gcc_E_libc.py example for more details. Windows users can download
and install a binary build of Clang for Windows from this website [http://llvm.org/releases/download.html].

1.3.2 What about the standard C library headers?

C code almost always #includes various header files from the standard C
library, like stdio.h. While (with some effort) pycparser can be made to
parse the standard headers from any C compiler, it’s much simpler to use the
provided “fake” standard includes in utils/fake_libc_include. These are
standard C header files that contain only the bare necessities to allow valid
parsing of the files that use them. As a bonus, since they’re minimal, it can
significantly improve the performance of parsing large C files.

The key point to understand here is that pycparser doesn’t really care about
the semantics of types. It only needs to know whether some token encountered in
the source is a previously defined type. This is essential in order to be able
to parse C correctly.

See this blog post [https://eli.thegreenplace.net/2015/on-parsing-c-type-declarations-and-fake-headers]
for more details.

1.3.3 Basic usage

Take a look at the examples directory of the distribution for a few examples
of using pycparser. These should be enough to get you started. Please note
that most realistic C code samples would require running the C preprocessor
before passing the code to pycparser; see the previous sections for more
details.

1.3.4 Advanced usage

The public interface of pycparser is well documented with comments in
pycparser/c_parser.py. For a detailed overview of the various AST nodes
created by the parser, see pycparser/_c_ast.cfg.

There’s also a FAQ available here [https://github.com/eliben/pycparser/wiki/FAQ].
In any case, you can always drop me an email for help.

1.4 Modifying

There are a few points to keep in mind when modifying pycparser:

	The code for pycparser’s AST nodes is automatically generated from a
configuration file - _c_ast.cfg, by _ast_gen.py. If you modify the AST
configuration, make sure to re-generate the code.

	Make sure you understand the optimized mode of pycparser - for that you
must read the docstring in the constructor of the CParser class. For
development you should create the parser without optimizations, so that it
will regenerate the Yacc and Lex tables when you change the grammar.

1.5 Package contents

Once you unzip the pycparser package, you’ll see the following files and
directories:

	README.rst:
	This README file.

	LICENSE:
	The pycparser license

	setup.py:
	Installation script

	examples/:
	A directory with some examples of using pycparser

	pycparser/:
	The pycparser module source code.

	tests/:
	Unit tests.

	utils/fake_libc_include:
	Minimal standard C library include files that should allow to parse any C code.

	utils/internal/:
	Internal utilities for my own use. You probably don’t need them.

1.6 Contributors

Some people have contributed to pycparser by opening issues on bugs they’ve
found and/or submitting patches. The list of contributors is in the CONTRIBUTORS
file in the source distribution. After pycparser moved to Github I stopped
updating this list because Github does a much better job at tracking
contributions.

1.7 CI Status

pycparser has automatic testing enabled through the convenient
Travis CI project [https://travis-ci.org]. Here is the latest build status:

[image: ../../../../_images/pycparser.png]
 [https://travis-ci.org/eliben/pycparser]AppVeyor also helps run tests on Windows:

[image: ../../../../_images/wrup68o5y8nuk1i9.svg]
 [https://ci.appveyor.com/project/eliben/pycparser/]

 Run these examples from the root directory of pycparser.

Please note that most realistic C code samples would require running the C
preprocessor before passing the code to pycparser; see the README file [https://github.com/eliben/pycparser/blob/master/README.rst] and
this blog post [https://eli.thegreenplace.net/2015/on-parsing-c-type-declarations-and-fake-headers]
more details.

 _static/cupl_textonly_white_small.png

_plantuml/42/42a0bab848020e6d0df9d570d415c0b5d87445ff.png
specification
TNF + flags
copec speC s

Speciiication
ResetCause
cobec_spec 16

Speciication
Status b64
Cobec_spec 15

specification
Message format
copEC spEC 1

Speciiication
NDEF URL record
Cobec_sPeC 3

Speciiication

VFmt b64
copEC_SPEC_:

Requirement
Encoder wi

a message
CopEc_REQ_1

Speciication
HashN b64

CoDEC_SPEC_14

specification
Endstop
copec spec 13

Specfication
Circular Buffer
Copec_speC 12

Specification specification
URL parameters Reduce EEPROM

decoded wear
CoDEC_SPEC_15 copEc_sPEC_2

Requirement
Message is
written to
EEPROM
copec_Rea s

Requirement
Decoder
reproduces
encoder data
Copec.reo 2

rites

Requirement
Codec comprises
an encoder and

decoder,
copec_req’s

Specfication
Circular buffer
decoded

CoDEC_SPEC_10

Specfiication
Zero user

configuration
CopEc trec s

Requirement

specification specification o

e o en oty

CODEC_SPEC 4 Copec spEC 8 from the user
copEC REQ_7

Requirement
Encoder shall
run on a low
cost, low power
microcontroller
CopEc AEQ 12

_static/minus.png

_static/plus.png

_static/file.png

_images/plantuml-42a0bab848020e6d0df9d570d415c0b5d87445ff.png
specification
TNF + flags
copec speC s

Speciiication
ResetCause
cobec_spec 16

Speciication
Status b64
Cobec_spec 15

specification
Message format
copEC spEC 1

Speciiication
NDEF URL record
Cobec_sPeC 3

Speciiication

VFmt b64
copEC_SPEC_:

Requirement
Encoder wi

a message
CopEc_REQ_1

Speciication
HashN b64

CoDEC_SPEC_14

specification
Endstop
copec spec 13

Specfication
Circular Buffer
Copec_speC 12

Specification specification
URL parameters Reduce EEPROM

decoded wear
CoDEC_SPEC_15 copEc_sPEC_2

Requirement
Message is
written to
EEPROM
copec_Rea s

Requirement
Decoder
reproduces
encoder data
Copec.reo 2

rites

Requirement
Codec comprises
an encoder and

decoder,
copec_req’s

Specfication
Circular buffer
decoded

CoDEC_SPEC_10

Specfiication
Zero user

configuration
CopEc trec s

Requirement

specification specification o

e o en oty

CODEC_SPEC 4 Copec spEC 8 from the user
copEC REQ_7

Requirement
Encoder shall
run on a low
cost, low power
microcontroller
CopEc AEQ 12

_images/pycparser.png
“build passing

_images/inheritance-d831ad80622983f99ec3f93d5d1e3b5114b35055.png
hdc2021.TempRH_URL
circularbuffer.CircularBufferURL pairs.PairsURL samples.samplesURL [’_'

——

hdc2021.Temp_URL

_images/inheritance-e49064be13b104f6dd9cecb45b90cab8dd272d62.png
samples.Sample

o[hdc2021 TempSample

hdc2021 TempRHSample

nav.xhtml

 Table of Contents

 		
 cupl Codec Documentation

 		
 Requirements

 		
 Encoder

 		
 Decoder

 		
 Specifications

 		
 Features

 		
 NDEF message

 		
 NDEF record

 		
 Other

 		
 Low resource utilisation

 		
 Implementation

 		
 Decoder

 		
 Decode a cuplcodec URL

 		
 Sample

 		
 Pair

 		
 Status

 		
 C Encoder

 		
 Python Wrapped Encoder (PyEncoder)

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_asc.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_asc_disabled.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_both.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_desc.png

_static/sphinx-needs/libs/html/DataTables-1.10.16/images/sort_desc_disabled.png

